Residual based a posteriori error estimators for eddy current computation

Rudi Beck; Ralf Hiptmair; Ronald H. W. Hoppe; Barbara Wohlmuth

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2000)

  • Volume: 34, Issue: 1, page 159-182
  • ISSN: 0764-583X

How to cite

top

Beck, Rudi, et al. "Residual based a posteriori error estimators for eddy current computation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.1 (2000): 159-182. <http://eudml.org/doc/193976>.

@article{Beck2000,
author = {Beck, Rudi, Hiptmair, Ralf, Hoppe, Ronald H. W., Wohlmuth, Barbara},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite element method; Helmholtz decomposition; error bounds; eddy currents; mesh refinement},
language = {eng},
number = {1},
pages = {159-182},
publisher = {Dunod},
title = {Residual based a posteriori error estimators for eddy current computation},
url = {http://eudml.org/doc/193976},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Beck, Rudi
AU - Hiptmair, Ralf
AU - Hoppe, Ronald H. W.
AU - Wohlmuth, Barbara
TI - Residual based a posteriori error estimators for eddy current computation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 1
SP - 159
EP - 182
LA - eng
KW - finite element method; Helmholtz decomposition; error bounds; eddy currents; mesh refinement
UR - http://eudml.org/doc/193976
ER -

References

top
  1. [1] B. Achchab, A. Agouzal, J. Baranger and J. Maitre, Estimateur d'erreur a posteriori hiérarchique. Application aux éléments finis mixtes. IMPACT Comput. Sci. Engrg. 1 (1995) 3-35. 
  2. [2] R. Albanese and G. Rubinacci, Formulation of the eddy-current problem. IEE Proc. A 137 (1990) 16-22. Zbl0722.65071
  3. [3] Analysis of three dimensional electromagnetic fileds using edge elements. J. Comp. Phys. 108 (1993) 236-245. Zbl0791.65096
  4. [4] A. Alonso and A. Valli, Some remarks on the characterization of the space of tangential traces of H (rot; Ω) and the construction of an extension operator. Manuscripta math. 89 (1996) 159-178. Zbl0856.46019MR1371994
  5. [5] H. Ammari, A. Buffa and J.-C. Nédélec, A justification of eddy currents model for the Maxwell equations. Tech. Rep., IAN, University of Pavia, Pavia, Italy (1998). Zbl0978.35070
  6. [6] C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional nonsmooth domains. Math. Methods Appl. Sci. 21 (1998) 823-864. Zbl0914.35094MR1626990
  7. [7] D. Arnold, A. Mukherjee and L. Pouly, Locally adapted tetrahedral meshes using bisection. SIAM J. on Sci. Compt (submitted). Zbl0973.65116MR1780608
  8. [8] I. Babuška and W. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978) 736-754. Zbl0398.65069MR483395
  9. [9] I. Babuška and W. Rheinboldt, A posteriori error estimates for the finite element method. Internet. J. Numer. Methods Engrg. 12 (1978) 1597-1615. Zbl0396.65068
  10. [10] R. Bank, PLTMG: A Software Package for Solving Elliptic Partial Differential Equations, User's Guide 6.0. SIAM, Philadelphia (1990). Zbl0717.68001MR1052151
  11. [11] R. Bank, A. Sherman and A. Weiser, Refinement algorithm and data structures for regular local mesh refinement, in Scientific Computing, R. Stepleman et al., Ed., Vol. 44, IMACS North-Holland, Amsterdam (1983) 3-17. MR751598
  12. [12] R. Bank and A. Weiser, some a posteriori error estimators for elliptic partial differential equations. Math. Comp. 44 (1985) 283-301. Zbl0569.65079MR777265
  13. [13] E. Bänsch, Local mesh refinement in 2 and 3 dimensions. IMPACT Comput. Sci. Engrg. 3 (1991) 181-191. Zbl0744.65074MR1141298
  14. [14] R. Beck, P. Deuflhard, R. Hiptmair, R. Hoppe and B. Wohlmuth, Adaptive multilevel methods for edge element discretizations of Maxwell's equations. Surveys for Mathematics in Industry. Zbl0939.65136
  15. [15] R. Beck and R. Hiptmair, Multilevel solution of the time-harmonic Maxwell equations based on edge elements. Tech. Rep. SC-96-51, ZIB Berlin (1996). in Internat J. Numer. Methods Engrg. (To appear). Zbl0930.35167MR1696118
  16. [16] J. Bey, Tetrahedral grid refinement. Computing 55 (1995) 355-378. Zbl0839.65135MR1370107
  17. [17] F. Bornemann, An adaptive multilevel approach to parabolic equations I. General theory and lD-implementation. IMPACT Comput. Sci, Engrg. 2 (1990) 279-317. Zbl0722.65055
  18. [18] F. Bornemann, An adaptive multilevel approach to parabolic equations II. Variable-order time discretization based on a multiplicative error correction. IMPACT Comput. Sci. Engrg. 3 (1991) 93-122. Zbl0735.65066MR1141295
  19. [19] F. Bornemann, B. Erdmann and R. Kornhuber, A posteriori error estimates for elliptic problems in two and three spaces dimensions. SIAM J. Numer. Anal. 33 (1996) 1188-1204. Zbl0863.65069MR1393909
  20. [20] A. Bossavit, Mixed finite elements and the complex of Whitney forms, in The Mathematics of Finite Elements and Applications VI J. Whiteman Ed., Academic Press, London (1988) 137-144. Zbl0692.65053MR956893
  21. [21] A. Bossavit, A rationale for edge elements in 3D field computations. IEEE Trans. Mag. 24 (1988) 74-79. 
  22. [22] A. Bossavit, Solving Maxwell's equations in a closed cavity and the question of spurious modes. IEEE Trans. Mag. 26 (1990) 702-705. 
  23. [23] A. Bossavit, Electromagnétisme, en vue de la modélisation. Springer-Verlag, Paris (1993). Zbl0787.65090MR1616583
  24. [24] A. Bossavit, Computational Electromagnetism. Variational Formulation, Complementarity, Edge Elements. in Academic Press Electromagnetism Series, no. 2 Academic Press, San Diego (1998). Zbl0945.78001MR1488417
  25. [25] D. Braess and R. Verfürth, A posteriori error estimators for the Raviart-Thomas element. SIAM J. Numer. Anal. 33 (1996) 2431-2445. Zbl0866.65071MR1427472
  26. [26] C. Carstensen, A posteriori error estimate for the mixed finite element method. Math. Comp. 66 (1997) 465-476. Zbl0864.65068MR1408371
  27. [27] P. Ciarlet, The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications, Vol. 4 North-Holland, Amsterdam (1978). Zbl0383.65058MR520174
  28. [28] M. Clemens, R. Schuhmann, U. van Rienen and T. Weiland, Modern Krylov subspace methods in electromagnetic field computation using the finite integration theory. ACES J. Appl. Math. 11 (1996) 70-84. 
  29. [29] M. Clemens and T. Weiland, Transient eddy current calculation with the FI-method. in Proc. CEFC '98, IEEE (1998); IEEE Trans. Mag. submitted. 
  30. [30] P. Clément, Approximation by finite element functions using local regularization. Revue Franc. Automat. Inform. Rech. Operat. 9, R-2 (1975) 77-84. Zbl0368.65008MR400739
  31. [31] M. Costabel and M. Dauge, Singularities of electromagnetic fields in polyhedral domains. Tech. Rep. 97-19, IRMAR, Rennes, France (1997). Zbl0968.35113
  32. [32] M. Costabel, M. Dauge and S. Nicaise, Singularities of Maxwell interface problems, Tech. Rep. 98-24, IRMAR, Rennes, France (1998). 
  33. [33] H. Dirks, Quasi-stationary fields for microelectronic applications. Electrical Engineering 79 (1996) 145-155. 
  34. [34] P. Dular, J.-Y. Hody, A. Nicolet, A. Genon and W. Legros, Mixed finite elements associated with a collection of tetrahedra, hexahedra and prisms. IEEE Trans Magnetics MAG-30 (1994) 2980-2983. 
  35. [35] K. Erikson, D. Estep, P. Hansbo and C. Johnson, Introduction to adaptive methods for differential equations. Acta Numerica 4 (1995) 105-158. Zbl0829.65122MR1352472
  36. [36] K. Eriksson and C. Johnson, An adaptive finite element method for linear elliptic problems. Math. Comp. 50 (1988) 361-383. Zbl0644.65080MR929542
  37. [37] V. Girault and P. Raviart, Finite element methods for Navier-Stokes equations, Springer-Verlag, Berlin (1986). Zbl0585.65077MR851383
  38. [38] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Springer-Verlag, Berlin, Heidelberg, New York (1991). Zbl0729.65051MR1111480
  39. [39] R. Hiptmair, Multigrid method for Maxwell's equations. Tech. Rep. 374, Institut für Mathematik, Universität Augsburg (1997). Zbl0922.65081
  40. [40] R. Hiptmair, Canonical construction of finite elements. Math. Comp. 68 (1999) 1325-1346. Zbl0938.65132MR1665954
  41. [41] R. Hoppe and B. Wohlmuth, Adaptive multilevel iterative techniques for nonconforming finite element discretizations. East- West J. Numer. Math. 3 (1995) 179-197. Zbl0836.65127MR1359409
  42. [42] R. Hoppe and B. Wohlmuth, A comparison of a posteriori error estimators for mixed finite elements. Math. Comp. 68 (1999) 1347-1378. Zbl0929.65094MR1651760
  43. [43] R. Hoppe and B. Wohlmuth, Element-oriented and edge-oriented local error estimators for nonconforming finite element methods. Model. Math. Anal. Numér. 30 (1996) 237-263. Zbl0843.65075MR1382112
  44. [44] R. Hoppe and B. Wohlmuth, Adaptive multilevel techniques for mixed finite element discretizations of elliptic boundary value problems. SIAM J. Numer. Anal. 34 (1997) 1658-1687. Zbl0889.65124MR1461801
  45. [45] R. Hoppe and B. Wohlmuth, Hierarchical basis error estimators for Raviart-Thomas discretizations of arbitrary order, in Finite Element Methods: Superconvergence, Post-processing and A Posteriori Estimates, M. Krizck, P. Neittaanmäki and R. Stenberg Eds., Marcel Dekker, New York (1997) 155-167. Zbl0902.65051MR1602853
  46. [46] J. Maubach, Local bisection refinement for n-simplicial grids generated by reflection. SIAM J. Sci. Stat. Comp. 16 (1995) 210-227. Zbl0816.65090MR1311687
  47. [47] P. Monk, A mixed method for approximating Maxwell's equations. SIAM J. Numer. Anal. 28 (1991) 1610-1634. Zbl0742.65091MR1135758
  48. [48] P. Monk, Analysis of a finite element method for Maxwell's equations. SIAM J. Numer. Anal. 29 (1992) 714-729. Zbl0761.65097MR1163353
  49. [49] J. Nédélec, Mixed finite elements in R3, Numer. Math. 35 (1980) 315-341. Zbl0419.65069MR592160
  50. [50] E. Ong, Hierarchical basis preconditioners for second order elliptic problems in three dimensions. Ph.D. thesis. Dept. of Math., UCLA, Los Angeles, CA, USA (1990). 
  51. [51] P. Oswald, Multilevel finite element approximation, Teubner Skripten zur Numerik, B.G. Teubner, Stuttgart (1994). Zbl0830.65107MR1312165
  52. [52] J. P. Ciarlet and J. Zou, Fully discrete finite element approaches for time-dependent Maxwell equations. Tech. Rep. TR MATH-96-31 (105), Department of Mathematics, The Chinese University of Hong Kong (1996). Num. Math. (to appear). Zbl1126.78310
  53. [53] L. R. Scott and Z. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483-493. Zbl0696.65007MR1011446
  54. [54] R. Verfürth, A posteriori error estimators for nonlinear problems. Finite element discretizations of elliptic equations. Math. Comp. 62 (1994) 445-475. Zbl0799.65112MR1213837
  55. [55] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Chichester, Stuttgart (1996). Zbl0853.65108
  56. [56] H. Whitney, Geometric Integration Theory. Princeton Univ. Press, Princeton (1957). Zbl0083.28204MR87148
  57. [57] J. Zhu and O. Zienkiewicz, Adaptive techniques in the finite element method. Commun. Appl. Numer. Methods 4 (1988) 197-204. Zbl0633.73070

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.