Residual based a posteriori error estimators for eddy current computation
Rudi Beck; Ralf Hiptmair; Ronald H. W. Hoppe; Barbara Wohlmuth
- Volume: 34, Issue: 1, page 159-182
- ISSN: 0764-583X
Access Full Article
topHow to cite
topBeck, Rudi, et al. "Residual based a posteriori error estimators for eddy current computation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.1 (2000): 159-182. <http://eudml.org/doc/193976>.
@article{Beck2000,
author = {Beck, Rudi, Hiptmair, Ralf, Hoppe, Ronald H. W., Wohlmuth, Barbara},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite element method; Helmholtz decomposition; error bounds; eddy currents; mesh refinement},
language = {eng},
number = {1},
pages = {159-182},
publisher = {Dunod},
title = {Residual based a posteriori error estimators for eddy current computation},
url = {http://eudml.org/doc/193976},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Beck, Rudi
AU - Hiptmair, Ralf
AU - Hoppe, Ronald H. W.
AU - Wohlmuth, Barbara
TI - Residual based a posteriori error estimators for eddy current computation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 1
SP - 159
EP - 182
LA - eng
KW - finite element method; Helmholtz decomposition; error bounds; eddy currents; mesh refinement
UR - http://eudml.org/doc/193976
ER -
References
top- [1] B. Achchab, A. Agouzal, J. Baranger and J. Maitre, Estimateur d'erreur a posteriori hiérarchique. Application aux éléments finis mixtes. IMPACT Comput. Sci. Engrg. 1 (1995) 3-35.
- [2] R. Albanese and G. Rubinacci, Formulation of the eddy-current problem. IEE Proc. A 137 (1990) 16-22. Zbl0722.65071
- [3] Analysis of three dimensional electromagnetic fileds using edge elements. J. Comp. Phys. 108 (1993) 236-245. Zbl0791.65096
- [4] A. Alonso and A. Valli, Some remarks on the characterization of the space of tangential traces of H (rot; Ω) and the construction of an extension operator. Manuscripta math. 89 (1996) 159-178. Zbl0856.46019MR1371994
- [5] H. Ammari, A. Buffa and J.-C. Nédélec, A justification of eddy currents model for the Maxwell equations. Tech. Rep., IAN, University of Pavia, Pavia, Italy (1998). Zbl0978.35070
- [6] C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional nonsmooth domains. Math. Methods Appl. Sci. 21 (1998) 823-864. Zbl0914.35094MR1626990
- [7] D. Arnold, A. Mukherjee and L. Pouly, Locally adapted tetrahedral meshes using bisection. SIAM J. on Sci. Compt (submitted). Zbl0973.65116MR1780608
- [8] I. Babuška and W. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978) 736-754. Zbl0398.65069MR483395
- [9] I. Babuška and W. Rheinboldt, A posteriori error estimates for the finite element method. Internet. J. Numer. Methods Engrg. 12 (1978) 1597-1615. Zbl0396.65068
- [10] R. Bank, PLTMG: A Software Package for Solving Elliptic Partial Differential Equations, User's Guide 6.0. SIAM, Philadelphia (1990). Zbl0717.68001MR1052151
- [11] R. Bank, A. Sherman and A. Weiser, Refinement algorithm and data structures for regular local mesh refinement, in Scientific Computing, R. Stepleman et al., Ed., Vol. 44, IMACS North-Holland, Amsterdam (1983) 3-17. MR751598
- [12] R. Bank and A. Weiser, some a posteriori error estimators for elliptic partial differential equations. Math. Comp. 44 (1985) 283-301. Zbl0569.65079MR777265
- [13] E. Bänsch, Local mesh refinement in 2 and 3 dimensions. IMPACT Comput. Sci. Engrg. 3 (1991) 181-191. Zbl0744.65074MR1141298
- [14] R. Beck, P. Deuflhard, R. Hiptmair, R. Hoppe and B. Wohlmuth, Adaptive multilevel methods for edge element discretizations of Maxwell's equations. Surveys for Mathematics in Industry. Zbl0939.65136
- [15] R. Beck and R. Hiptmair, Multilevel solution of the time-harmonic Maxwell equations based on edge elements. Tech. Rep. SC-96-51, ZIB Berlin (1996). in Internat J. Numer. Methods Engrg. (To appear). Zbl0930.35167MR1696118
- [16] J. Bey, Tetrahedral grid refinement. Computing 55 (1995) 355-378. Zbl0839.65135MR1370107
- [17] F. Bornemann, An adaptive multilevel approach to parabolic equations I. General theory and lD-implementation. IMPACT Comput. Sci, Engrg. 2 (1990) 279-317. Zbl0722.65055
- [18] F. Bornemann, An adaptive multilevel approach to parabolic equations II. Variable-order time discretization based on a multiplicative error correction. IMPACT Comput. Sci. Engrg. 3 (1991) 93-122. Zbl0735.65066MR1141295
- [19] F. Bornemann, B. Erdmann and R. Kornhuber, A posteriori error estimates for elliptic problems in two and three spaces dimensions. SIAM J. Numer. Anal. 33 (1996) 1188-1204. Zbl0863.65069MR1393909
- [20] A. Bossavit, Mixed finite elements and the complex of Whitney forms, in The Mathematics of Finite Elements and Applications VI J. Whiteman Ed., Academic Press, London (1988) 137-144. Zbl0692.65053MR956893
- [21] A. Bossavit, A rationale for edge elements in 3D field computations. IEEE Trans. Mag. 24 (1988) 74-79.
- [22] A. Bossavit, Solving Maxwell's equations in a closed cavity and the question of spurious modes. IEEE Trans. Mag. 26 (1990) 702-705.
- [23] A. Bossavit, Electromagnétisme, en vue de la modélisation. Springer-Verlag, Paris (1993). Zbl0787.65090MR1616583
- [24] A. Bossavit, Computational Electromagnetism. Variational Formulation, Complementarity, Edge Elements. in Academic Press Electromagnetism Series, no. 2 Academic Press, San Diego (1998). Zbl0945.78001MR1488417
- [25] D. Braess and R. Verfürth, A posteriori error estimators for the Raviart-Thomas element. SIAM J. Numer. Anal. 33 (1996) 2431-2445. Zbl0866.65071MR1427472
- [26] C. Carstensen, A posteriori error estimate for the mixed finite element method. Math. Comp. 66 (1997) 465-476. Zbl0864.65068MR1408371
- [27] P. Ciarlet, The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications, Vol. 4 North-Holland, Amsterdam (1978). Zbl0383.65058MR520174
- [28] M. Clemens, R. Schuhmann, U. van Rienen and T. Weiland, Modern Krylov subspace methods in electromagnetic field computation using the finite integration theory. ACES J. Appl. Math. 11 (1996) 70-84.
- [29] M. Clemens and T. Weiland, Transient eddy current calculation with the FI-method. in Proc. CEFC '98, IEEE (1998); IEEE Trans. Mag. submitted.
- [30] P. Clément, Approximation by finite element functions using local regularization. Revue Franc. Automat. Inform. Rech. Operat. 9, R-2 (1975) 77-84. Zbl0368.65008MR400739
- [31] M. Costabel and M. Dauge, Singularities of electromagnetic fields in polyhedral domains. Tech. Rep. 97-19, IRMAR, Rennes, France (1997). Zbl0968.35113
- [32] M. Costabel, M. Dauge and S. Nicaise, Singularities of Maxwell interface problems, Tech. Rep. 98-24, IRMAR, Rennes, France (1998).
- [33] H. Dirks, Quasi-stationary fields for microelectronic applications. Electrical Engineering 79 (1996) 145-155.
- [34] P. Dular, J.-Y. Hody, A. Nicolet, A. Genon and W. Legros, Mixed finite elements associated with a collection of tetrahedra, hexahedra and prisms. IEEE Trans Magnetics MAG-30 (1994) 2980-2983.
- [35] K. Erikson, D. Estep, P. Hansbo and C. Johnson, Introduction to adaptive methods for differential equations. Acta Numerica 4 (1995) 105-158. Zbl0829.65122MR1352472
- [36] K. Eriksson and C. Johnson, An adaptive finite element method for linear elliptic problems. Math. Comp. 50 (1988) 361-383. Zbl0644.65080MR929542
- [37] V. Girault and P. Raviart, Finite element methods for Navier-Stokes equations, Springer-Verlag, Berlin (1986). Zbl0585.65077MR851383
- [38] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Springer-Verlag, Berlin, Heidelberg, New York (1991). Zbl0729.65051MR1111480
- [39] R. Hiptmair, Multigrid method for Maxwell's equations. Tech. Rep. 374, Institut für Mathematik, Universität Augsburg (1997). Zbl0922.65081
- [40] R. Hiptmair, Canonical construction of finite elements. Math. Comp. 68 (1999) 1325-1346. Zbl0938.65132MR1665954
- [41] R. Hoppe and B. Wohlmuth, Adaptive multilevel iterative techniques for nonconforming finite element discretizations. East- West J. Numer. Math. 3 (1995) 179-197. Zbl0836.65127MR1359409
- [42] R. Hoppe and B. Wohlmuth, A comparison of a posteriori error estimators for mixed finite elements. Math. Comp. 68 (1999) 1347-1378. Zbl0929.65094MR1651760
- [43] R. Hoppe and B. Wohlmuth, Element-oriented and edge-oriented local error estimators for nonconforming finite element methods. Model. Math. Anal. Numér. 30 (1996) 237-263. Zbl0843.65075MR1382112
- [44] R. Hoppe and B. Wohlmuth, Adaptive multilevel techniques for mixed finite element discretizations of elliptic boundary value problems. SIAM J. Numer. Anal. 34 (1997) 1658-1687. Zbl0889.65124MR1461801
- [45] R. Hoppe and B. Wohlmuth, Hierarchical basis error estimators for Raviart-Thomas discretizations of arbitrary order, in Finite Element Methods: Superconvergence, Post-processing and A Posteriori Estimates, M. Krizck, P. Neittaanmäki and R. Stenberg Eds., Marcel Dekker, New York (1997) 155-167. Zbl0902.65051MR1602853
- [46] J. Maubach, Local bisection refinement for n-simplicial grids generated by reflection. SIAM J. Sci. Stat. Comp. 16 (1995) 210-227. Zbl0816.65090MR1311687
- [47] P. Monk, A mixed method for approximating Maxwell's equations. SIAM J. Numer. Anal. 28 (1991) 1610-1634. Zbl0742.65091MR1135758
- [48] P. Monk, Analysis of a finite element method for Maxwell's equations. SIAM J. Numer. Anal. 29 (1992) 714-729. Zbl0761.65097MR1163353
- [49] J. Nédélec, Mixed finite elements in R3, Numer. Math. 35 (1980) 315-341. Zbl0419.65069MR592160
- [50] E. Ong, Hierarchical basis preconditioners for second order elliptic problems in three dimensions. Ph.D. thesis. Dept. of Math., UCLA, Los Angeles, CA, USA (1990).
- [51] P. Oswald, Multilevel finite element approximation, Teubner Skripten zur Numerik, B.G. Teubner, Stuttgart (1994). Zbl0830.65107MR1312165
- [52] J. P. Ciarlet and J. Zou, Fully discrete finite element approaches for time-dependent Maxwell equations. Tech. Rep. TR MATH-96-31 (105), Department of Mathematics, The Chinese University of Hong Kong (1996). Num. Math. (to appear). Zbl1126.78310
- [53] L. R. Scott and Z. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483-493. Zbl0696.65007MR1011446
- [54] R. Verfürth, A posteriori error estimators for nonlinear problems. Finite element discretizations of elliptic equations. Math. Comp. 62 (1994) 445-475. Zbl0799.65112MR1213837
- [55] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Chichester, Stuttgart (1996). Zbl0853.65108
- [56] H. Whitney, Geometric Integration Theory. Princeton Univ. Press, Princeton (1957). Zbl0083.28204MR87148
- [57] J. Zhu and O. Zienkiewicz, Adaptive techniques in the finite element method. Commun. Appl. Numer. Methods 4 (1988) 197-204. Zbl0633.73070
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.