Optimal error estimates for FEM approximations of dynamic nonlinear shallow shells
- Volume: 34, Issue: 1, page 63-84
- ISSN: 0764-583X
Access Full Article
topHow to cite
topLasiecka, Irena, and Marchand, Rich. "Optimal error estimates for FEM approximations of dynamic nonlinear shallow shells." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.1 (2000): 63-84. <http://eudml.org/doc/193981>.
@article{Lasiecka2000,
author = {Lasiecka, Irena, Marchand, Rich},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {semidiscrete finite element approximations; nonlinear dynamic shallow shell models; global optimal rates of convergence},
language = {eng},
number = {1},
pages = {63-84},
publisher = {Dunod},
title = {Optimal error estimates for FEM approximations of dynamic nonlinear shallow shells},
url = {http://eudml.org/doc/193981},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Lasiecka, Irena
AU - Marchand, Rich
TI - Optimal error estimates for FEM approximations of dynamic nonlinear shallow shells
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 1
SP - 63
EP - 84
LA - eng
KW - semidiscrete finite element approximations; nonlinear dynamic shallow shell models; global optimal rates of convergence
UR - http://eudml.org/doc/193981
ER -
References
top- [1] M. Bernadou, Méthodes d'Éléments Finis pour les Problèmes de Coques Minces. Masson, Paris-Milan-Barcelone (1994). Zbl0355.65082
- [2] M. Bernadou and P.G. Ciarlet, Sur l'ellipticité du modèle linéaire de coques de W.T. Koiter, in Computing Methods in Applied Sciences and Engineering (Lecture Notes in Economics and Mathematical Systems), Springer-Verlag (1976) 89-136. Zbl0356.73066MR478954
- [3] M. Bernadou and B. Lalanne, On the approximations of free vibration modes of a general thin shell, application to turbine blades, in The Third European Conference on Mathematics in Industry, J. Manley et al. Eds., Kluwer Academic Publishers and B.G. Teubner Stuttgart (1990) 257-264. Zbl0706.73051
- [4] M. Bernadou, P.G. Ciarlet and B. Miara, Existence theorems for two-dimensional linear shell theories. Technical Report 1771, Unité de Recherche INRIA-Rocquencourt (1992). Zbl0808.73045
- [5] M. Bernadou and J.T. Oden, An existence theorem for a class of nonlinear shallow shell problems. J. Math. Pures Appl. 60 (1981) 285-308. Zbl0424.35040MR633006
- [6] P.G. Ciarlet, The Finite Element Method For Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978). Zbl0383.65058MR520174
- [7] M.C. Delfour and J.P. Zolésio, Tangential differential equations for dynamical thin/shallow shells. J. Differential Equations 128 (1995) 125-167. Zbl0852.73035MR1392399
- [8] W. Flügge, Tensor Analysis and Continuum Mechanics. Springer-Verlag (1972). Zbl0224.73001MR423958
- [9] R. Glowinski, Numerical Methods for Nonlinear Variational Problems. Springer Verlag, New York (1984). Zbl0536.65054MR737005
- [10] R. Glowinski and O. Pironneau, Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem. SIAM Rev. 21 (1979) 167-212. Zbl0427.65073MR524511
- [11] R. Glowinski and M. Wheeler, Domain decomposition and mixed finite element methods for elliptic problems, in Domain Decomposition Methods for Partial Differential Equations, SIAM (1988) 144-172. Zbl0661.65105MR972516
- [12] A.E. Green and W. Zerna, Theoretical Elasticity. Oxford University Press, 2nd. edn. (1968). Zbl0155.51801MR245245
- [13] W.T. Koiter, On the nonlinear theory of thin elastic shells, in Proc. Kon. Ned. Akad. Wetensch., Vol. B (1966) 1-54. MR192706
- [14] J.E. Lagnese, Boundary Stabilization of Thin Plates. SIAM, Philadelphia, Pennsylvania (1989). Zbl0696.73034MR1061153
- [15] I. Lasiecka, Uniform stabilization of a full von Karman system with nonlinear boundary feedback. SIAM J. Control 36 (1998) 1376-1422. Zbl0911.93036MR1627581
- [16] I. Lasiecka, Weak, classical and intermediate solutions to full von Karman system of dynamic nonlinear elasticity. Applicable Anal. 68 (1998) 123-145. Zbl0905.35092MR1623321
- [17] J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Paris (1969). Zbl0189.40603MR259693
- [18] J.L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. 1. Springer Verlag (1972). Zbl0223.35039
- [19] L. Mansfield, Analysis of finite element methods for the nonlinear dynamic analysis of shells. Numerische Mathematik 42 (1983) 213-235. Zbl0536.73065MR720660
- [20] R. Marchand, Finite element approximations of control problems arising in nonlinear shell theory. Ph.D. thesis, University of Virginia (1996).
- [21] V.G. Mazya and T.V. Shaposhnikova, Theory of Multipliers in Spaces of Differentiable Functions. Pitman (1985). Zbl0645.46031
- [22] A. Raoult, Analyse mathématique de quelques modèles de plaques et de poutres élastiques ou élasto-plastiques. Doctoral Dissertation, Université Pierre et Marie Curie, Paris (1988).
- [23] H.L. Royden, Real Analysis. Macmillan Publishing Company, 3rd edn. (1988). Zbl0704.26006MR1013117
- [24] V.I. Sedenko, The uniqueness of generalized solutions of initial boundary value problem for Marguerre-Vlasov equation in the nonlinear oscillation theory of shallow shells. Izwestia Vysshyh Uchebnych Zavedenij (1994) 1-2.
- [25] V. Thomee, Galerkin Finite Element Methods for Parabolic Problems. Springer Verlag (1984). Zbl0528.65052MR744045
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.