Fluids with anisotropic viscosity
Jean-Yves Chemin; Benoît Desjardins; Isabelle Gallagher; Emmanuel Grenier
- Volume: 34, Issue: 2, page 315-335
- ISSN: 0764-583X
Access Full Article
topHow to cite
topChemin, Jean-Yves, et al. "Fluids with anisotropic viscosity." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.2 (2000): 315-335. <http://eudml.org/doc/193988>.
@article{Chemin2000,
author = {Chemin, Jean-Yves, Desjardins, Benoît, Gallagher, Isabelle, Grenier, Emmanuel},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Strichartz-type anisotropic dispersive estimates; rotating fluids; incompressible fluids; anisotropic viscosity; anisotropic spaces; existence theorem; global well-posedness},
language = {eng},
number = {2},
pages = {315-335},
publisher = {Dunod},
title = {Fluids with anisotropic viscosity},
url = {http://eudml.org/doc/193988},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Chemin, Jean-Yves
AU - Desjardins, Benoît
AU - Gallagher, Isabelle
AU - Grenier, Emmanuel
TI - Fluids with anisotropic viscosity
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 2
SP - 315
EP - 335
LA - eng
KW - Strichartz-type anisotropic dispersive estimates; rotating fluids; incompressible fluids; anisotropic viscosity; anisotropic spaces; existence theorem; global well-posedness
UR - http://eudml.org/doc/193988
ER -
References
top- [1] A. Babin, A. Mahalov and B. Nicolaenko, Global Splitting, Integrability and Regularity of 3D Euler and Navier Stokes Equations for Uniformly Rotating Fluids. Eur. J. Mech. 15 (1996) 291-300. Zbl0882.76096MR1400515
- [2] J. M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Annales de l'École Normale Superieure 14 (1981) 209-246. Zbl0495.35024MR631751
- [3] J.-Y. Chemin, Fluides parfaits incompressibles. Astérisque 230 (1995). Zbl0829.76003MR1340046
- [4] J.-Y. Chemin, A propos d'un problème de pénalisation de type antisymétrique. J. Math. Pures. Appl. 76 (1997) 739-755. Zbl0896.35103MR1485418
- [5] J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs non Lipschitziens et équations de Navier-Stokes. J. Differential Equations 121 (1992) 314-328. Zbl0878.35089MR1354312
- [6] J.-Y. Chemin and B. Desjardins, I. Gallagher and E. Grenier, Anisotropy and dispersion in rotating fluids, preprint of Universite d'Orsay (1999). Zbl0961.76085MR1735883
- [7] B. Desjardins and E. Grenier, On the homogeneous model of wind driven ocean circulation. SIAM. J. Appl. Math. (to appear). Zbl0958.76092MR1740834
- [8] B. Desjardins and E. Grenier, Dérivation of quasi-geostrophic potential vorticity equations. Adv. in Differential Equations 3 (1998), No. 5, 715-752. Zbl0967.76096MR1665870
- [9] B. Desjardins and E. Grenier, Low Mach number limit of compressible flows in the whole space. Proceedmgs of the Royal Society of London A. 455 (1999) 2271-2279. Zbl0934.76080MR1702718
- [10] H. Fujita and T. Kato, On the Navier Stokes initial value problem I. Archiv for Rational Mechanic Analysis 16 (1964) 269-315. Zbl0126.42301MR166499
- [11] I. Gallagher, The Tridimensional Navier-Stokes Equations with Almost Bidimensional Data: Stability, Uniqueness and Life Span. International Mathematics Research Notices 18 (1997) 919-935. Zbl0893.35098MR1481611
- [12] H. P. Greenspan, The theory of rotating fluids. Cambridge monographs on mechanics and applied mathematics (1969). Zbl0182.28103
- [13] E. Grenier and N. Masmoudi, Ekman layers of rotating fluids, the case of well prepared initial data. Comm. Partial Differential Equations 22, No. 5-6, (1997) 953-975. Zbl0880.35093MR1452174
- [14] D. Iftimie, La résolution des équations de Navier Stokes dans des domaines minces et la limite quasigéostrophique. Thèse de l'Université Paris 6 (1997).
- [15] D. Iftimie, The resolution of the Navier-Stokes equations in anisotropic spaces. Revista Matematica Ibero-Americana 15 (1999) 1-36. Zbl0923.35119MR1681635
- [16] J. Leray, Essai sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math. 63 (1933) 193-248. Zbl59.0763.02JFM60.0726.05
- [17] J. Pedlosky, Geophysical fluid dynamics, Springer (1979). Zbl0429.76001
- [18] J. Rauch and M. Reed, Nonlinear microlocal analysis of semilinear hyperbolic systems in one space dimension. Duke Mathematical Journal 49 (1982) 397-475. Zbl0503.35055MR659948
- [19] M. Sablé-Tougeron, Régularité microlocale pour des problèmes aux limites non linéaires. Annales de l'Institut Fourier 36 (1986) 39-82. Zbl0577.35004MR840713
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.