Fluids with anisotropic viscosity

Jean-Yves Chemin; Benoît Desjardins; Isabelle Gallagher; Emmanuel Grenier

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2000)

  • Volume: 34, Issue: 2, page 315-335
  • ISSN: 0764-583X

How to cite

top

Chemin, Jean-Yves, et al. "Fluids with anisotropic viscosity." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.2 (2000): 315-335. <http://eudml.org/doc/193988>.

@article{Chemin2000,
author = {Chemin, Jean-Yves, Desjardins, Benoît, Gallagher, Isabelle, Grenier, Emmanuel},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Strichartz-type anisotropic dispersive estimates; rotating fluids; incompressible fluids; anisotropic viscosity; anisotropic spaces; existence theorem; global well-posedness},
language = {eng},
number = {2},
pages = {315-335},
publisher = {Dunod},
title = {Fluids with anisotropic viscosity},
url = {http://eudml.org/doc/193988},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Chemin, Jean-Yves
AU - Desjardins, Benoît
AU - Gallagher, Isabelle
AU - Grenier, Emmanuel
TI - Fluids with anisotropic viscosity
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 2
SP - 315
EP - 335
LA - eng
KW - Strichartz-type anisotropic dispersive estimates; rotating fluids; incompressible fluids; anisotropic viscosity; anisotropic spaces; existence theorem; global well-posedness
UR - http://eudml.org/doc/193988
ER -

References

top
  1. [1] A. Babin, A. Mahalov and B. Nicolaenko, Global Splitting, Integrability and Regularity of 3D Euler and Navier Stokes Equations for Uniformly Rotating Fluids. Eur. J. Mech. 15 (1996) 291-300. Zbl0882.76096MR1400515
  2. [2] J. M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Annales de l'École Normale Superieure 14 (1981) 209-246. Zbl0495.35024MR631751
  3. [3] J.-Y. Chemin, Fluides parfaits incompressibles. Astérisque 230 (1995). Zbl0829.76003MR1340046
  4. [4] J.-Y. Chemin, A propos d'un problème de pénalisation de type antisymétrique. J. Math. Pures. Appl. 76 (1997) 739-755. Zbl0896.35103MR1485418
  5. [5] J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs non Lipschitziens et équations de Navier-Stokes. J. Differential Equations 121 (1992) 314-328. Zbl0878.35089MR1354312
  6. [6] J.-Y. Chemin and B. Desjardins, I. Gallagher and E. Grenier, Anisotropy and dispersion in rotating fluids, preprint of Universite d'Orsay (1999). Zbl0961.76085MR1735883
  7. [7] B. Desjardins and E. Grenier, On the homogeneous model of wind driven ocean circulation. SIAM. J. Appl. Math. (to appear). Zbl0958.76092MR1740834
  8. [8] B. Desjardins and E. Grenier, Dérivation of quasi-geostrophic potential vorticity equations. Adv. in Differential Equations 3 (1998), No. 5, 715-752. Zbl0967.76096MR1665870
  9. [9] B. Desjardins and E. Grenier, Low Mach number limit of compressible flows in the whole space. Proceedmgs of the Royal Society of London A. 455 (1999) 2271-2279. Zbl0934.76080MR1702718
  10. [10] H. Fujita and T. Kato, On the Navier Stokes initial value problem I. Archiv for Rational Mechanic Analysis 16 (1964) 269-315. Zbl0126.42301MR166499
  11. [11] I. Gallagher, The Tridimensional Navier-Stokes Equations with Almost Bidimensional Data: Stability, Uniqueness and Life Span. International Mathematics Research Notices 18 (1997) 919-935. Zbl0893.35098MR1481611
  12. [12] H. P. Greenspan, The theory of rotating fluids. Cambridge monographs on mechanics and applied mathematics (1969). Zbl0182.28103
  13. [13] E. Grenier and N. Masmoudi, Ekman layers of rotating fluids, the case of well prepared initial data. Comm. Partial Differential Equations 22, No. 5-6, (1997) 953-975. Zbl0880.35093MR1452174
  14. [14] D. Iftimie, La résolution des équations de Navier Stokes dans des domaines minces et la limite quasigéostrophique. Thèse de l'Université Paris 6 (1997). 
  15. [15] D. Iftimie, The resolution of the Navier-Stokes equations in anisotropic spaces. Revista Matematica Ibero-Americana 15 (1999) 1-36. Zbl0923.35119MR1681635
  16. [16] J. Leray, Essai sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math. 63 (1933) 193-248. Zbl59.0763.02JFM60.0726.05
  17. [17] J. Pedlosky, Geophysical fluid dynamics, Springer (1979). Zbl0429.76001
  18. [18] J. Rauch and M. Reed, Nonlinear microlocal analysis of semilinear hyperbolic systems in one space dimension. Duke Mathematical Journal 49 (1982) 397-475. Zbl0503.35055MR659948
  19. [19] M. Sablé-Tougeron, Régularité microlocale pour des problèmes aux limites non linéaires. Annales de l'Institut Fourier 36 (1986) 39-82. Zbl0577.35004MR840713

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.