The role of oscillations in the global wellposedness of the 3-D incompressible anisotropic Navier-Stokes equations
Jean-Yves Chemin[1]; Ping Zhang[2]
- [1] Laboratoire J.-L. Lions, Case 187 Université Pierre et Marie Curie, 75230 Paris Cedex 05, FRANCE
- [2] Academy of Mathematics & Systems Science, CAS Beijing 100080, CHINA.
Séminaire Équations aux dérivées partielles (2005-2006)
- Volume: 2005-2006, page 1-18
Access Full Article
topAbstract
topHow to cite
topChemin, Jean-Yves, and Zhang, Ping. "The role of oscillations in the global wellposedness of the 3-D incompressible anisotropic Navier-Stokes equations." Séminaire Équations aux dérivées partielles 2005-2006 (2005-2006): 1-18. <http://eudml.org/doc/11143>.
@article{Chemin2005-2006,
abstract = {Corresponding to the wellposedness result [2] for the classical 3-D Navier-Stokes equations $(NS_\nu )$ with initial data in the scaling invariant Besov space, $\{\cal B\}^\{-1+\frac\{3\}\{p\}\}_\{p,\infty \},$ here we consider a similar problem for the 3-D anisotropic Navier-Stokes equations $(ANS_\nu ),$ where the vertical viscosity is zero. In order to do so, we first introduce the Besov-Sobolev type spaces, $\{\cal B\}^\{-\frac\{1\}\{2\},\frac\{1\}\{2\}\}_4$ and $\{\cal B\}^\{-\frac\{1\}\{2\},\frac\{1\}\{2\}\}_4(T).$ Then with initial data in the scaling invariant space $\{\cal B\}^\{-\frac\{1\}\{2\},\frac\{1\}\{2\}\}_4,$ we prove the global wellposedness for $(ANS_\nu )$ provided the norm of initial data is small enough compared to the horizontal viscosity. In particular, this result implies the global wellposedness of $(ANS_\nu )$ with high oscillatory initial data.},
affiliation = {Laboratoire J.-L. Lions, Case 187 Université Pierre et Marie Curie, 75230 Paris Cedex 05, FRANCE; Academy of Mathematics & Systems Science, CAS Beijing 100080, CHINA.},
author = {Chemin, Jean-Yves, Zhang, Ping},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {anisotropic Navier-Stokes equations; global wellposedness; high oscillatory initial data},
language = {eng},
pages = {1-18},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {The role of oscillations in the global wellposedness of the 3-D incompressible anisotropic Navier-Stokes equations},
url = {http://eudml.org/doc/11143},
volume = {2005-2006},
year = {2005-2006},
}
TY - JOUR
AU - Chemin, Jean-Yves
AU - Zhang, Ping
TI - The role of oscillations in the global wellposedness of the 3-D incompressible anisotropic Navier-Stokes equations
JO - Séminaire Équations aux dérivées partielles
PY - 2005-2006
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2005-2006
SP - 1
EP - 18
AB - Corresponding to the wellposedness result [2] for the classical 3-D Navier-Stokes equations $(NS_\nu )$ with initial data in the scaling invariant Besov space, ${\cal B}^{-1+\frac{3}{p}}_{p,\infty },$ here we consider a similar problem for the 3-D anisotropic Navier-Stokes equations $(ANS_\nu ),$ where the vertical viscosity is zero. In order to do so, we first introduce the Besov-Sobolev type spaces, ${\cal B}^{-\frac{1}{2},\frac{1}{2}}_4$ and ${\cal B}^{-\frac{1}{2},\frac{1}{2}}_4(T).$ Then with initial data in the scaling invariant space ${\cal B}^{-\frac{1}{2},\frac{1}{2}}_4,$ we prove the global wellposedness for $(ANS_\nu )$ provided the norm of initial data is small enough compared to the horizontal viscosity. In particular, this result implies the global wellposedness of $(ANS_\nu )$ with high oscillatory initial data.
LA - eng
KW - anisotropic Navier-Stokes equations; global wellposedness; high oscillatory initial data
UR - http://eudml.org/doc/11143
ER -
References
top- J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Annales de l’École Normale Supérieure,14, 1981, pages 209-246. Zbl0495.35024
- M. Cannone, Y. Meyer and F. Planchon, Solutions autosimilaires des équations de Navier-Stokes, Séminaire "Équations aux Dérivées Partielles de l’École Polytechnique", Exposé VIII, 1993–1994. Zbl0882.35090
- J.-Y. Chemin, Théorèmes d’unicité pour le système de Navier-Stokes tridimensionnel, Journal d’Analyse Mathématique, 77, 1999, pages 27–50. Zbl0938.35125
- J.-Y. Chemin, Localization in Fourier space and Navier-Stokes system, Phase Space Analysis of Partial Differential Equations, Proceedings 2004, CRM series, Pisa, pages 53-136. Zbl1081.35074MR2144406
- J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Basics of Mathematical Geophysics, Preprint of CMLS, École polytechnique, 2004. MR2228849
- J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Fluids with anisotropic viscosity, Modélisation Mathématique et Analyse Numérique, 34, 2000, pages 315-335. Zbl0954.76012MR1765662
- J.-Y. Chemin and P. Zhang, On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations, to appear in Zbl1132.35068MR2300252
- T.-M. Fleet, Differential Analysis, Cambridge University Press, 1980. Zbl0442.34002MR561908
- H. Fujita and T. Kato, On the Navier-Stokes initial value problem I, Archiv for Rational Mechanic Analysis, 16, 1964, pages 269–315. Zbl0126.42301MR166499
- D. Iftimie, A uniqueness result for the Navier-Stokes equations with vanishing vertical viscosity, SIAM Journal of Mathematical Analysis, 33, 2002, pages 1483–1493. Zbl1011.35105MR1920641
- H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations. Advances in Mathematics, 157, 2001, pages 22–35. Zbl0972.35084MR1808843
- M. Paicu, Equation anisotrope de Navier-Stokes dans des espaces critiques, Revista Matematica Iberoamericana, 21, 2005, pages 179–235. Zbl1110.35060MR2155019
- M. Vishik, Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type, Annales de l’École Normale Supérieure,32, 1999, pages 769-812. Zbl0938.35128
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.