The role of oscillations in the global wellposedness of the 3-D incompressible anisotropic Navier-Stokes equations

Jean-Yves Chemin[1]; Ping Zhang[2]

  • [1] Laboratoire J.-L. Lions, Case 187 Université Pierre et Marie Curie, 75230 Paris Cedex 05, FRANCE
  • [2] Academy of Mathematics & Systems Science, CAS Beijing 100080, CHINA.

Séminaire Équations aux dérivées partielles (2005-2006)

  • Volume: 2005-2006, page 1-18

Abstract

top
Corresponding to the wellposedness result [2] for the classical 3-D Navier-Stokes equations ( N S ν ) with initial data in the scaling invariant Besov space, p , - 1 + 3 p , here we consider a similar problem for the 3-D anisotropic Navier-Stokes equations ( A N S ν ) , where the vertical viscosity is zero. In order to do so, we first introduce the Besov-Sobolev type spaces, 4 - 1 2 , 1 2 and 4 - 1 2 , 1 2 ( T ) . Then with initial data in the scaling invariant space 4 - 1 2 , 1 2 , we prove the global wellposedness for ( A N S ν ) provided the norm of initial data is small enough compared to the horizontal viscosity. In particular, this result implies the global wellposedness of ( A N S ν ) with high oscillatory initial data.

How to cite

top

Chemin, Jean-Yves, and Zhang, Ping. "The role of oscillations in the global wellposedness of the 3-D incompressible anisotropic Navier-Stokes equations." Séminaire Équations aux dérivées partielles 2005-2006 (2005-2006): 1-18. <http://eudml.org/doc/11143>.

@article{Chemin2005-2006,
abstract = {Corresponding to the wellposedness result [2] for the classical 3-D Navier-Stokes equations $(NS_\nu )$ with initial data in the scaling invariant Besov space, $\{\cal B\}^\{-1+\frac\{3\}\{p\}\}_\{p,\infty \},$ here we consider a similar problem for the 3-D anisotropic Navier-Stokes equations $(ANS_\nu ),$ where the vertical viscosity is zero. In order to do so, we first introduce the Besov-Sobolev type spaces, $\{\cal B\}^\{-\frac\{1\}\{2\},\frac\{1\}\{2\}\}_4$ and $\{\cal B\}^\{-\frac\{1\}\{2\},\frac\{1\}\{2\}\}_4(T).$ Then with initial data in the scaling invariant space $\{\cal B\}^\{-\frac\{1\}\{2\},\frac\{1\}\{2\}\}_4,$ we prove the global wellposedness for $(ANS_\nu )$ provided the norm of initial data is small enough compared to the horizontal viscosity. In particular, this result implies the global wellposedness of $(ANS_\nu )$ with high oscillatory initial data.},
affiliation = {Laboratoire J.-L. Lions, Case 187 Université Pierre et Marie Curie, 75230 Paris Cedex 05, FRANCE; Academy of Mathematics & Systems Science, CAS Beijing 100080, CHINA.},
author = {Chemin, Jean-Yves, Zhang, Ping},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {anisotropic Navier-Stokes equations; global wellposedness; high oscillatory initial data},
language = {eng},
pages = {1-18},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {The role of oscillations in the global wellposedness of the 3-D incompressible anisotropic Navier-Stokes equations},
url = {http://eudml.org/doc/11143},
volume = {2005-2006},
year = {2005-2006},
}

TY - JOUR
AU - Chemin, Jean-Yves
AU - Zhang, Ping
TI - The role of oscillations in the global wellposedness of the 3-D incompressible anisotropic Navier-Stokes equations
JO - Séminaire Équations aux dérivées partielles
PY - 2005-2006
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2005-2006
SP - 1
EP - 18
AB - Corresponding to the wellposedness result [2] for the classical 3-D Navier-Stokes equations $(NS_\nu )$ with initial data in the scaling invariant Besov space, ${\cal B}^{-1+\frac{3}{p}}_{p,\infty },$ here we consider a similar problem for the 3-D anisotropic Navier-Stokes equations $(ANS_\nu ),$ where the vertical viscosity is zero. In order to do so, we first introduce the Besov-Sobolev type spaces, ${\cal B}^{-\frac{1}{2},\frac{1}{2}}_4$ and ${\cal B}^{-\frac{1}{2},\frac{1}{2}}_4(T).$ Then with initial data in the scaling invariant space ${\cal B}^{-\frac{1}{2},\frac{1}{2}}_4,$ we prove the global wellposedness for $(ANS_\nu )$ provided the norm of initial data is small enough compared to the horizontal viscosity. In particular, this result implies the global wellposedness of $(ANS_\nu )$ with high oscillatory initial data.
LA - eng
KW - anisotropic Navier-Stokes equations; global wellposedness; high oscillatory initial data
UR - http://eudml.org/doc/11143
ER -

References

top
  1. J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Annales de l’École Normale Supérieure,14, 1981, pages 209-246. Zbl0495.35024
  2. M. Cannone, Y. Meyer and F. Planchon, Solutions autosimilaires des équations de Navier-Stokes, Séminaire "Équations aux Dérivées Partielles de l’École Polytechnique", Exposé VIII, 1993–1994. Zbl0882.35090
  3. J.-Y. Chemin, Théorèmes d’unicité pour le système de Navier-Stokes tridimensionnel, Journal d’Analyse Mathématique, 77, 1999, pages 27–50. Zbl0938.35125
  4. J.-Y. Chemin, Localization in Fourier space and Navier-Stokes system, Phase Space Analysis of Partial Differential Equations, Proceedings 2004, CRM series, Pisa, pages 53-136. Zbl1081.35074MR2144406
  5. J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Basics of Mathematical Geophysics, Preprint of CMLS, École polytechnique, 2004. MR2228849
  6. J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Fluids with anisotropic viscosity, Modélisation Mathématique et Analyse Numérique, 34, 2000, pages 315-335. Zbl0954.76012MR1765662
  7. J.-Y. Chemin and P. Zhang, On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations, to appear in Zbl1132.35068MR2300252
  8. T.-M. Fleet, Differential Analysis, Cambridge University Press, 1980. Zbl0442.34002MR561908
  9. H. Fujita and T. Kato, On the Navier-Stokes initial value problem I, Archiv for Rational Mechanic Analysis, 16, 1964, pages 269–315. Zbl0126.42301MR166499
  10. D. Iftimie, A uniqueness result for the Navier-Stokes equations with vanishing vertical viscosity, SIAM Journal of Mathematical Analysis, 33, 2002, pages 1483–1493. Zbl1011.35105MR1920641
  11. H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations. Advances in Mathematics, 157, 2001, pages 22–35. Zbl0972.35084MR1808843
  12. M. Paicu, Equation anisotrope de Navier-Stokes dans des espaces critiques, Revista Matematica Iberoamericana, 21, 2005, pages 179–235. Zbl1110.35060MR2155019
  13. M. Vishik, Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type, Annales de l’École Normale Supérieure,32, 1999, pages 769-812. Zbl0938.35128

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.