An adaptive multi-level method for convection diffusion problems

Martine Marion; Adeline Mollard

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2000)

  • Volume: 34, Issue: 2, page 439-458
  • ISSN: 0764-583X

How to cite

top

Marion, Martine, and Mollard, Adeline. "An adaptive multi-level method for convection diffusion problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.2 (2000): 439-458. <http://eudml.org/doc/193995>.

@article{Marion2000,
author = {Marion, Martine, Mollard, Adeline},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {adaptive multi-level method; convection diffusion problems; characteristics method; error estimate; numerical experiments},
language = {eng},
number = {2},
pages = {439-458},
publisher = {Dunod},
title = {An adaptive multi-level method for convection diffusion problems},
url = {http://eudml.org/doc/193995},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Marion, Martine
AU - Mollard, Adeline
TI - An adaptive multi-level method for convection diffusion problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 2
SP - 439
EP - 458
LA - eng
KW - adaptive multi-level method; convection diffusion problems; characteristics method; error estimate; numerical experiments
UR - http://eudml.org/doc/193995
ER -

References

top
  1. [1] M. Bercovier, O. Pironneau and V. Sastri, Finite elements and characteristics for some parabolic-hyperbolic problems. Appl. Math. Modelling 7 (1983) 89-96. Zbl0505.65055MR703386
  2. [2] K. Boukir, Y. Maday, B. Metivet and R. Razafindrakoto, A high-order characteristics/finite element method for imcompressible Navier-Stokes equations. Rapport de l'Université Pierre et Marie Curie, R92032 (1992). Zbl0904.76040
  3. [3] J. B. Burie and M. Marion, Multi-level methods in space and time for Navier-Stokes equations. SIAM J. Numer. Anal. 34 (1997) 1574-1599. Zbl0897.76070MR1461797
  4. [4] J. B. Burie and M. Marion, Adaptative multi-level methods in space and time for paraboloc problems- The periodic case. Math. of Comp. (to appear). Zbl0941.65101MR1648359
  5. [5] A. Debussche, T. Dubois and R. Temam, The nonlinear Galerkin method: A multi-scale method applied to the simulation of turbulent flows. Theoret. Comput. Fluid Dynamics 7 (1995) 279-315. Zbl0838.76060
  6. [6] J. Douglas and T.F. Russel, Numerical methods for convection dominated diffusion problems based on combining the method of caracteristics with finite element methods or finite difference method. SIAM J. Numer. Anal. 19 (1982) 871-885. Zbl0492.65051MR672564
  7. [7] T. Dubois, Simulation numérique d'écoulement homogènes et non-homogènes par des méthodes multi-résolution, Thèse, Université Paris-Sud (1993). 
  8. [8] K. Enksson and C. Johnson, Adaptative finite element methods for parabolic problems I : A linear model problem. SIAM J. Numer. Anal. 28 (1991) 43-77. Zbl0732.65093MR1083324
  9. [9] C. Foras, O. Manley and R. Temam, Modelling of the interaction of small and large eddies in two-dimensional turbulent flows. M2AN 22 (1998) 93-114. Zbl0663.76054MR934703
  10. [10] P. Houston and E. Suli, Adaptative Lagrange-Galerkin methods for unsteady convection-dominated diffusion problems, Oxford University Computing Laboratory Report, 95/24 (1995). Zbl0957.65085
  11. [11] F. Jauberteau, Résolution numérique des équations de Navier-Stokes instationnaires par méthodes spectrales. Méthode de Galerkin non linéaire, Thèse, Université Paris-Sud (1990). 
  12. [12] M. Marion and A. Mollard, A multi-level characteristics method for periodic convection-dominated diffusion problems. Numer. Math. PDEs (to appear). Zbl0953.65065
  13. [13] M. Marion and J. Xu, Error estimates on a new nonlinear Galerkin method based on two-grid finite elements. SIAM J. Numer. Anal. 32 (1995) 1170-1184. Zbl0853.65092MR1342288
  14. [14] A. Mollard, Méthodes de caractéristiques multi-niveaux en espace et en temps pour une équation de convection-diffusion - Cas d'une approximation pseudo-spectrale, Thèse, École Centrale de Lyon (1998). 
  15. [15] O. Pironneau, Finite element methods for fluids, Masson (1989). Zbl0748.76003MR1030279
  16. [16] E. Suli, Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes Equations. Numer. Math. 53 (1988) 459-483. Zbl0637.76024MR951325
  17. [17] E. Suli and A. F. Ware, A spectral method of characteristics for hyperbolic problems. SIAM J. Numer. Anal. 28 (1991) 423-445. Zbl0743.65080MR1087513

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.