Stability of microstructure for tetragonal to monoclinic martensitic transformations
- Volume: 34, Issue: 3, page 663-685
- ISSN: 0764-583X
Access Full Article
topHow to cite
topBělík, Pavel, and Luskin, Mitchell. "Stability of microstructure for tetragonal to monoclinic martensitic transformations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.3 (2000): 663-685. <http://eudml.org/doc/194007>.
@article{Bělík2000,
author = {Bělík, Pavel, Luskin, Mitchell},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {stability; uniqueness; simply laminated microstructure; tetragonal to monoclinic martensitic transformations; energy density; rotationally invariant wells; error estimates; finite element approximation},
language = {eng},
number = {3},
pages = {663-685},
publisher = {Dunod},
title = {Stability of microstructure for tetragonal to monoclinic martensitic transformations},
url = {http://eudml.org/doc/194007},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Bělík, Pavel
AU - Luskin, Mitchell
TI - Stability of microstructure for tetragonal to monoclinic martensitic transformations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 3
SP - 663
EP - 685
LA - eng
KW - stability; uniqueness; simply laminated microstructure; tetragonal to monoclinic martensitic transformations; energy density; rotationally invariant wells; error estimates; finite element approximation
UR - http://eudml.org/doc/194007
ER -
References
top- [1] R. Adams, Sobolev Spaces. Academic Press, New York (1975). Zbl0314.46030MR450957
- [2] J. Ball and R. James, Fine phase mixtures as minimizers of energy. Arch. Rat. Mech. Anal. 100 (1987) 13-52. Zbl0629.49020MR906132
- [3] J. Ball and R. James, Proposed experimental tests of a theory of fine microstructure and the two-well problem. Phil. Trans. R. Soc. Lond. A 338 (1992) 389-450. Zbl0758.73009
- [4] K. Bhattacharya, Self accomodation in martensite. Arch. Rat. Mech. Anal. 120 (1992) 201-244. Zbl0771.73007MR1183551
- [5] K. Bhattacharya and G. Dolzmann, Relaxation of some multiwell problems, in Proc. R. Soc. Edinburgh: Section A, to appear. Zbl0977.74029
- [6] K. Bhattacharya, B. Li and M. Luskin, The simply laminated microstructure in martensitic crystals that undergo a cubic to orthorhombic phase transformation. Arch. Rat. Mech. Anal. 149 (2000) 123-154. Zbl0942.74056MR1719149
- [7] B. Brighi and M. Chipot, Approximation of infima in the calculus of variations. J. Comput. Appl. Math. 98 (1998) 273-287. Zbl0937.65071MR1656994
- [8] C. Carstensen and P. Plecháč, Numerical solution of the scalar double-well problem allowing microstructure. Math. Comp., 66 (1997) 997-1026. Zbl0870.65055MR1415798
- [9] C. Carstensen and P. Plecháč, Adaptive algorithms for scalar non-convex variational problems. Appl. Numer. Math. 26 (1998) 203-216. Zbl0894.65029MR1602868
- [10] M. Chipot, Numerical analysis of oscillations in nonconvex problems. Numer. Math. 59 (1991) 747-767. Zbl0712.65063MR1128031
- [11] M. Chipot and C. Collins, Numerical approximations in variational problems with potential wells. SIAM J. Numer. Anal. 29 (1992) 1002-1019. Zbl0763.65049MR1173182
- [12] M. Chipot, C. Collins, and D. Kinderlehrer, Numerical analysis of oscillations in multiple well problems. Numer. Math. 70 (1995) 259-282. Zbl0824.65045MR1330864
- [13] M. Chipot and D. Kinderlehrer, Equilibrium configurations of crystals. Arch. Rat. Mech. Anal. 103 (1988) 237-277. Zbl0673.73012MR955934
- [14] M. Chipot and S. Muller, Sharp energy estimates for finite element approximations of nonconvex problems. (preprint, 1997).
- [15] C. Collins, D. Kinderlehrer, and M. Luskin, Numerical approximation of the solution of a variational problem with a double well potential. SIAM J. Numer. Anal. 28 (1991) 321-332. Zbl0725.65067MR1087507
- [16] C. Collins and M. Luskin, Optimal order estimates for the finite element approximation of the solution of a nonconvex variational problem. Math. Comp. 57 (1991) 621-637. Zbl0735.65042MR1094944
- [17] B. Dacorogna, Direct methods in the calculus of variations. Springer-Verlag, Berlin, (1989). Zbl0703.49001MR990890
- [18] G. Dolzmann, Numerical computation of rank-one convex envelopes. SIAM. J. Numer. Anal. 36 (1999) 1621-1635. Zbl0941.65062MR1706747
- [19] D. French, On the convergence of finite element approximations of a relaxed variational problem. SIAM J. Numer Anal. 28 (1991) 419-436. Zbl0696.65070MR1043613
- [20] L. Jian and R. James, Prediction of microstructure in monoclinic LaNbO4 by energy minimization. Acta Mater. 45 (1997) 4271-4281.
- [21] D. Kinderlehrer and P. Pedregal, Characterizations of gradient Young measures. Arch. Rat. Mech. Anal. 115 (1991) 29-365. Zbl0754.49020MR1139835
- [22] M. Kruzík, Numerical approach to double well problems. SIAM. J. Numer Anal. 35 (1998) 1833-1849. Zbl0929.49016MR1639950
- [23] B. Li and M. Luskin, Finite element analysis of microstructure for the cubic to tetragonal transformation. SIAM J. Numer. Anal. 35 (1998) 376-392. Zbl0919.49020MR1618484
- [24] B. Li and M. Luskin, Nonconforming finite element approximation of crystalline microstructure. Math. Comp. 67(223) (1998) 917-946. Zbl0901.73076MR1459391
- [25] B. Li and M. Luskin, Approximation of a martensitic laminate with varying volume fractions. Math. Model. Numer. Anal. 33 (1999) 67-87. Zbl0928.74012MR1685744
- [26] Z. Li, Simultaneous numerical approximation of microstructures and relaxed minimizers. Numer. Math. 78 (1997) 21-38. Zbl0890.65067MR1483567
- [27] M. Luskin, Approximation of a laminated microstructure for a rotationally invariant, double well energy density. Numer. Math. 75 (1996) 205-221. Zbl0874.73060MR1421987
- [28] M. Luskin, On the computation of crystalline microstructure. Acta. Numer. (1996) 191-257. Zbl0867.65033MR1624603
- [29] M. Luskin and L. Ma, Analysis of the finite element approximation of microstructure in micromagnetics. SIAM J. Numer. Anal. 29 320-331. Zbl0760.65113MR1154269
- [30] R. Nicolaides and N. Walkington, Strong convergence of numerical solutions to degenerate variational problems. Math. Comp. 64 (1995) 117-127. Zbl0821.65040MR1262281
- [31] P. Pedregal, Numerical approximation of parametrized measures. Num. Funct. Anal. Opt. 16 (1995) 1049-1066. Zbl0848.65049MR1355286
- [32] P. Pedregal, On the numerical analysis of non-convex variational problems. Numer. Math. 74 (1996) 325-336. Zbl0858.65059MR1408606
- [33] T. Roubíček, Numerical approximation of relaxed variational problems. J. Convex. Anal. 3 (1996) 329-347. Zbl0881.65058MR1448060
- [34] N. Simha, Crystallography of the tetragonal → monoclinic transformation in zirconia. J. Phys. IV Colloq. France 5 (1995). C81121-C81126.
- [35] N. Simha, Twin and habit plane microstructures due to the tetragonal to monoclinic transformation of zircoma. J. Mech. Phys. Solids 45 (1997) 261-292.
- [36] V. Šverák, Lower-semicontinuity of variational integrals and compensated compactness, in Proceedings ICM 94, Zürich (1995) Birkhäuser. Zbl0852.49010MR1404015
- [37] L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear analysis and mechanics,R. Knops, Ed., Pitman Research Notes in Mathematics, London 39 (1978) 136-212. Zbl0437.35004MR584398
- [38] G. Zanzotto, Twinning in minerals and metals remarks on the comparison of a thermoelasticity theory with some available experimental results. Atti Acc. Lincei Rend. Fis. 82 (1988) 725-756. Zbl0737.73012
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.