Stability of microstructure for tetragonal to monoclinic martensitic transformations

Pavel Bělík; Mitchell Luskin

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2000)

  • Volume: 34, Issue: 3, page 663-685
  • ISSN: 0764-583X

How to cite

top

Bělík, Pavel, and Luskin, Mitchell. "Stability of microstructure for tetragonal to monoclinic martensitic transformations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.3 (2000): 663-685. <http://eudml.org/doc/194007>.

@article{Bělík2000,
author = {Bělík, Pavel, Luskin, Mitchell},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {stability; uniqueness; simply laminated microstructure; tetragonal to monoclinic martensitic transformations; energy density; rotationally invariant wells; error estimates; finite element approximation},
language = {eng},
number = {3},
pages = {663-685},
publisher = {Dunod},
title = {Stability of microstructure for tetragonal to monoclinic martensitic transformations},
url = {http://eudml.org/doc/194007},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Bělík, Pavel
AU - Luskin, Mitchell
TI - Stability of microstructure for tetragonal to monoclinic martensitic transformations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 3
SP - 663
EP - 685
LA - eng
KW - stability; uniqueness; simply laminated microstructure; tetragonal to monoclinic martensitic transformations; energy density; rotationally invariant wells; error estimates; finite element approximation
UR - http://eudml.org/doc/194007
ER -

References

top
  1. [1] R. Adams, Sobolev Spaces. Academic Press, New York (1975). Zbl0314.46030MR450957
  2. [2] J. Ball and R. James, Fine phase mixtures as minimizers of energy. Arch. Rat. Mech. Anal. 100 (1987) 13-52. Zbl0629.49020MR906132
  3. [3] J. Ball and R. James, Proposed experimental tests of a theory of fine microstructure and the two-well problem. Phil. Trans. R. Soc. Lond. A 338 (1992) 389-450. Zbl0758.73009
  4. [4] K. Bhattacharya, Self accomodation in martensite. Arch. Rat. Mech. Anal. 120 (1992) 201-244. Zbl0771.73007MR1183551
  5. [5] K. Bhattacharya and G. Dolzmann, Relaxation of some multiwell problems, in Proc. R. Soc. Edinburgh: Section A, to appear. Zbl0977.74029
  6. [6] K. Bhattacharya, B. Li and M. Luskin, The simply laminated microstructure in martensitic crystals that undergo a cubic to orthorhombic phase transformation. Arch. Rat. Mech. Anal. 149 (2000) 123-154. Zbl0942.74056MR1719149
  7. [7] B. Brighi and M. Chipot, Approximation of infima in the calculus of variations. J. Comput. Appl. Math. 98 (1998) 273-287. Zbl0937.65071MR1656994
  8. [8] C. Carstensen and P. Plecháč, Numerical solution of the scalar double-well problem allowing microstructure. Math. Comp., 66 (1997) 997-1026. Zbl0870.65055MR1415798
  9. [9] C. Carstensen and P. Plecháč, Adaptive algorithms for scalar non-convex variational problems. Appl. Numer. Math. 26 (1998) 203-216. Zbl0894.65029MR1602868
  10. [10] M. Chipot, Numerical analysis of oscillations in nonconvex problems. Numer. Math. 59 (1991) 747-767. Zbl0712.65063MR1128031
  11. [11] M. Chipot and C. Collins, Numerical approximations in variational problems with potential wells. SIAM J. Numer. Anal. 29 (1992) 1002-1019. Zbl0763.65049MR1173182
  12. [12] M. Chipot, C. Collins, and D. Kinderlehrer, Numerical analysis of oscillations in multiple well problems. Numer. Math. 70 (1995) 259-282. Zbl0824.65045MR1330864
  13. [13] M. Chipot and D. Kinderlehrer, Equilibrium configurations of crystals. Arch. Rat. Mech. Anal. 103 (1988) 237-277. Zbl0673.73012MR955934
  14. [14] M. Chipot and S. Muller, Sharp energy estimates for finite element approximations of nonconvex problems. (preprint, 1997). 
  15. [15] C. Collins, D. Kinderlehrer, and M. Luskin, Numerical approximation of the solution of a variational problem with a double well potential. SIAM J. Numer. Anal. 28 (1991) 321-332. Zbl0725.65067MR1087507
  16. [16] C. Collins and M. Luskin, Optimal order estimates for the finite element approximation of the solution of a nonconvex variational problem. Math. Comp. 57 (1991) 621-637. Zbl0735.65042MR1094944
  17. [17] B. Dacorogna, Direct methods in the calculus of variations. Springer-Verlag, Berlin, (1989). Zbl0703.49001MR990890
  18. [18] G. Dolzmann, Numerical computation of rank-one convex envelopes. SIAM. J. Numer. Anal. 36 (1999) 1621-1635. Zbl0941.65062MR1706747
  19. [19] D. French, On the convergence of finite element approximations of a relaxed variational problem. SIAM J. Numer Anal. 28 (1991) 419-436. Zbl0696.65070MR1043613
  20. [20] L. Jian and R. James, Prediction of microstructure in monoclinic LaNbO4 by energy minimization. Acta Mater. 45 (1997) 4271-4281. 
  21. [21] D. Kinderlehrer and P. Pedregal, Characterizations of gradient Young measures. Arch. Rat. Mech. Anal. 115 (1991) 29-365. Zbl0754.49020MR1139835
  22. [22] M. Kruzík, Numerical approach to double well problems. SIAM. J. Numer Anal. 35 (1998) 1833-1849. Zbl0929.49016MR1639950
  23. [23] B. Li and M. Luskin, Finite element analysis of microstructure for the cubic to tetragonal transformation. SIAM J. Numer. Anal. 35 (1998) 376-392. Zbl0919.49020MR1618484
  24. [24] B. Li and M. Luskin, Nonconforming finite element approximation of crystalline microstructure. Math. Comp. 67(223) (1998) 917-946. Zbl0901.73076MR1459391
  25. [25] B. Li and M. Luskin, Approximation of a martensitic laminate with varying volume fractions. Math. Model. Numer. Anal. 33 (1999) 67-87. Zbl0928.74012MR1685744
  26. [26] Z. Li, Simultaneous numerical approximation of microstructures and relaxed minimizers. Numer. Math. 78 (1997) 21-38. Zbl0890.65067MR1483567
  27. [27] M. Luskin, Approximation of a laminated microstructure for a rotationally invariant, double well energy density. Numer. Math. 75 (1996) 205-221. Zbl0874.73060MR1421987
  28. [28] M. Luskin, On the computation of crystalline microstructure. Acta. Numer. (1996) 191-257. Zbl0867.65033MR1624603
  29. [29] M. Luskin and L. Ma, Analysis of the finite element approximation of microstructure in micromagnetics. SIAM J. Numer. Anal. 29 320-331. Zbl0760.65113MR1154269
  30. [30] R. Nicolaides and N. Walkington, Strong convergence of numerical solutions to degenerate variational problems. Math. Comp. 64 (1995) 117-127. Zbl0821.65040MR1262281
  31. [31] P. Pedregal, Numerical approximation of parametrized measures. Num. Funct. Anal. Opt. 16 (1995) 1049-1066. Zbl0848.65049MR1355286
  32. [32] P. Pedregal, On the numerical analysis of non-convex variational problems. Numer. Math. 74 (1996) 325-336. Zbl0858.65059MR1408606
  33. [33] T. Roubíček, Numerical approximation of relaxed variational problems. J. Convex. Anal. 3 (1996) 329-347. Zbl0881.65058MR1448060
  34. [34] N. Simha, Crystallography of the tetragonal → monoclinic transformation in zirconia. J. Phys. IV Colloq. France 5 (1995). C81121-C81126. 
  35. [35] N. Simha, Twin and habit plane microstructures due to the tetragonal to monoclinic transformation of zircoma. J. Mech. Phys. Solids 45 (1997) 261-292. 
  36. [36] V. Šverák, Lower-semicontinuity of variational integrals and compensated compactness, in Proceedings ICM 94, Zürich (1995) Birkhäuser. Zbl0852.49010MR1404015
  37. [37] L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear analysis and mechanics,R. Knops, Ed., Pitman Research Notes in Mathematics, London 39 (1978) 136-212. Zbl0437.35004MR584398
  38. [38] G. Zanzotto, Twinning in minerals and metals remarks on the comparison of a thermoelasticity theory with some available experimental results. Atti Acc. Lincei Rend. Fis. 82 (1988) 725-756. Zbl0737.73012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.