An upwinding mixed finite element method for a mean field model of superconducting vortices
- Volume: 34, Issue: 3, page 687-706
- ISSN: 0764-583X
Access Full Article
topHow to cite
topChen, Zhiming, and Du, Qiang. "An upwinding mixed finite element method for a mean field model of superconducting vortices." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.3 (2000): 687-706. <http://eudml.org/doc/194008>.
@article{Chen2000,
author = {Chen, Zhiming, Du, Qiang},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Mean field model, superconductivity, vortices, mixed finite element, unstructured grid, convergence analysis.},
language = {eng},
number = {3},
pages = {687-706},
publisher = {Dunod},
title = {An upwinding mixed finite element method for a mean field model of superconducting vortices},
url = {http://eudml.org/doc/194008},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Chen, Zhiming
AU - Du, Qiang
TI - An upwinding mixed finite element method for a mean field model of superconducting vortices
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 3
SP - 687
EP - 706
LA - eng
KW - Mean field model, superconductivity, vortices, mixed finite element, unstructured grid, convergence analysis.
UR - http://eudml.org/doc/194008
ER -
References
top- [1] S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods. Springer-Verlag, New York (1994). Zbl0804.65101MR1278258
- [2] F. Brezzi and M. Fortin,Mixed and Hybrid Finite Element Methods. Springer, New York (1991). Zbl0788.73002MR1115205
- [3] S. J. Chapman, A mean-field model of superconductmg vortices in three dimensions. SIAM J. Appl. Math. 55 (1995)1259-1274. Zbl0836.76014MR1349309
- [4] S. J. Chapman and G. Richardson, Motion of vortices in type-II superconductors. SIAM J. Appl. Math. 55 (1995) 1275-1296. Zbl0836.76015MR1349310
- [5] S. J. Chapman, J. Rubenstem, and M. Schatzman, A mean-field model of superconducting vortices. Euro J. Appl. Math. 7 (1996) 97-111. Zbl0849.35135MR1388106
- [6] Z. Chen and S. Dai, Adaptive Galerkin methods with error control for a dynamical Ginzburg-Landau model in superconductwity. (Preprint, 1998). Zbl0987.65096MR1856238
- [7] B. Cockburn, S. Hou and C.-W. Shu, The Runge-Kutta local project ion discontinuos galerkin finite element method for conservation laws IV: The multidimensional case. Math. Com. 54 (1990) 545-581. Zbl0695.65066MR1010597
- [8] Q. Du, Convergence analysis of a hybrid numerical method for a mean field model of superconducting vortices. SIAM Numer. Analysis, (1998).
- [9] Q. Du, M. Gunzburger, and J. Peterson, Analysis and approximation of the Ginzburg-Landau model of superconductivity. SIAM Review 34 (1992) 54-81. Zbl0787.65091MR1156289
- [10] Q. Du, M. Gunzburger, and J. Peterson, Computational simulations of type-II superconductivity including pinnnig mechanisms. Phys. Rev. B 51 (1995) 16194-16203.
- [11] Q. Du, M. Gunzburger and H. Lee, Analysis and computation of a mean field model for superconductivity. Numer. Math. 81 539-560 (1999). Zbl0922.65090MR1675208
- [12] Q. Du and Gray, High-kappa limit of the time dependent Ginzburg-Landau model for superconductivity. SIAM J. Appl. Math. 56 (1996) 1060-1093. Zbl0865.35119MR1398408
- [13] W. E, Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity. Phys. D. 77 (1994) 383-404. Zbl0814.34039MR1297726
- [14] C. Elliott and V. Styles, Numerical analysis of a mean field model of superconductivity, preprint. Zbl0984.82042
- [15] V. Girault and -A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer, Berlin (1986). Zbl0585.65077MR851383
- [16] Grisvard, Elliptic Problems on Non-smooth Domains. Pitman, Boston (1985). Zbl0695.35060
- [17] C. Huang and T. Svobodny, Evolution of Mixed-state Régions in type-II superconductors. SIAM J. Math. Anal. 29 (1998) 1002-1021. Zbl0924.76116MR1617698
- [18] Lesaint and P. A. Raviart, On a Finite Element Method for Solving the Neutron Transport equation, in Mathematical Aspects of the Finite Element Method in Partial Differential Equations, C. de Boor Ed., Academic Press, New York (1974). Zbl0341.65076
- [19] L. Prigozhin, On the Bean critical-state model of superconductivity. Euro J. Appl. Math. 7 (1996) 237-247. Zbl0873.49007MR1401169
- [20] L. Prigozhin, The Bean model in superconductivity variational formulation and numerical solution. J. Com. Phys. 129 (1996) 190-200. Zbl0866.65081MR1419742
- [21] Raviart and J. Thomas, A mixed element method for 2nd order elliptic problems, in Mathematical Aspects of the Finite Element Method) Lecture Notes on Mathematics, Springer, Berlin 606 (1977). Zbl0362.65089
- [22] R. Schatale and V. Styles, Analysis of a mean field model of superconducting vortices, (preprint). Zbl0941.35133
- [23] R. Temam, Navier-Stokes equations, Theory and Numerical Analysis North-Holland, Amsterdam (1984). Zbl0568.35002MR769654
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.