An upwinding mixed finite element method for a mean field model of superconducting vortices

Zhiming Chen; Qiang Du

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2000)

  • Volume: 34, Issue: 3, page 687-706
  • ISSN: 0764-583X

How to cite

top

Chen, Zhiming, and Du, Qiang. "An upwinding mixed finite element method for a mean field model of superconducting vortices." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.3 (2000): 687-706. <http://eudml.org/doc/194008>.

@article{Chen2000,
author = {Chen, Zhiming, Du, Qiang},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Mean field model, superconductivity, vortices, mixed finite element, unstructured grid, convergence analysis.},
language = {eng},
number = {3},
pages = {687-706},
publisher = {Dunod},
title = {An upwinding mixed finite element method for a mean field model of superconducting vortices},
url = {http://eudml.org/doc/194008},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Chen, Zhiming
AU - Du, Qiang
TI - An upwinding mixed finite element method for a mean field model of superconducting vortices
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 3
SP - 687
EP - 706
LA - eng
KW - Mean field model, superconductivity, vortices, mixed finite element, unstructured grid, convergence analysis.
UR - http://eudml.org/doc/194008
ER -

References

top
  1. [1] S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods. Springer-Verlag, New York (1994). Zbl0804.65101MR1278258
  2. [2] F. Brezzi and M. Fortin,Mixed and Hybrid Finite Element Methods. Springer, New York (1991). Zbl0788.73002MR1115205
  3. [3] S. J. Chapman, A mean-field model of superconductmg vortices in three dimensions. SIAM J. Appl. Math. 55 (1995)1259-1274. Zbl0836.76014MR1349309
  4. [4] S. J. Chapman and G. Richardson, Motion of vortices in type-II superconductors. SIAM J. Appl. Math. 55 (1995) 1275-1296. Zbl0836.76015MR1349310
  5. [5] S. J. Chapman, J. Rubenstem, and M. Schatzman, A mean-field model of superconducting vortices. Euro J. Appl. Math. 7 (1996) 97-111. Zbl0849.35135MR1388106
  6. [6] Z. Chen and S. Dai, Adaptive Galerkin methods with error control for a dynamical Ginzburg-Landau model in superconductwity. (Preprint, 1998). Zbl0987.65096MR1856238
  7. [7] B. Cockburn, S. Hou and C.-W. Shu, The Runge-Kutta local project ion discontinuos galerkin finite element method for conservation laws IV: The multidimensional case. Math. Com. 54 (1990) 545-581. Zbl0695.65066MR1010597
  8. [8] Q. Du, Convergence analysis of a hybrid numerical method for a mean field model of superconducting vortices. SIAM Numer. Analysis, (1998). 
  9. [9] Q. Du, M. Gunzburger, and J. Peterson, Analysis and approximation of the Ginzburg-Landau model of superconductivity. SIAM Review 34 (1992) 54-81. Zbl0787.65091MR1156289
  10. [10] Q. Du, M. Gunzburger, and J. Peterson, Computational simulations of type-II superconductivity including pinnnig mechanisms. Phys. Rev. B 51 (1995) 16194-16203. 
  11. [11] Q. Du, M. Gunzburger and H. Lee, Analysis and computation of a mean field model for superconductivity. Numer. Math. 81 539-560 (1999). Zbl0922.65090MR1675208
  12. [12] Q. Du and Gray, High-kappa limit of the time dependent Ginzburg-Landau model for superconductivity. SIAM J. Appl. Math. 56 (1996) 1060-1093. Zbl0865.35119MR1398408
  13. [13] W. E, Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity. Phys. D. 77 (1994) 383-404. Zbl0814.34039MR1297726
  14. [14] C. Elliott and V. Styles, Numerical analysis of a mean field model of superconductivity, preprint. Zbl0984.82042
  15. [15] V. Girault and -A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer, Berlin (1986). Zbl0585.65077MR851383
  16. [16] Grisvard, Elliptic Problems on Non-smooth Domains. Pitman, Boston (1985). Zbl0695.35060
  17. [17] C. Huang and T. Svobodny, Evolution of Mixed-state Régions in type-II superconductors. SIAM J. Math. Anal. 29 (1998) 1002-1021. Zbl0924.76116MR1617698
  18. [18] Lesaint and P. A. Raviart, On a Finite Element Method for Solving the Neutron Transport equation, in Mathematical Aspects of the Finite Element Method in Partial Differential Equations, C. de Boor Ed., Academic Press, New York (1974). Zbl0341.65076
  19. [19] L. Prigozhin, On the Bean critical-state model of superconductivity. Euro J. Appl. Math. 7 (1996) 237-247. Zbl0873.49007MR1401169
  20. [20] L. Prigozhin, The Bean model in superconductivity variational formulation and numerical solution. J. Com. Phys. 129 (1996) 190-200. Zbl0866.65081MR1419742
  21. [21] Raviart and J. Thomas, A mixed element method for 2nd order elliptic problems, in Mathematical Aspects of the Finite Element Method) Lecture Notes on Mathematics, Springer, Berlin 606 (1977). Zbl0362.65089
  22. [22] R. Schatale and V. Styles, Analysis of a mean field model of superconducting vortices, (preprint). Zbl0941.35133
  23. [23] R. Temam, Navier-Stokes equations, Theory and Numerical Analysis North-Holland, Amsterdam (1984). Zbl0568.35002MR769654

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.