Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Mathematical analysis for the peridynamic nonlocal continuum theory

Qiang DuKun Zhou — 2011

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We develop a functional analytical framework for a linear peridynamic model of a spring network system in any space dimension. Various properties of the peridynamic operators are examined for general micromodulus functions. These properties are utilized to establish the well-posedness of both the stationary peridynamic model and the Cauchy problem of the time dependent peridynamic model. The connections to the classical elastic models are also provided.

An upwinding mixed finite element method for a mean field model of superconducting vortices

Zhiming ChenQiang Du — 2010

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we construct a combined upwinding and mixed finite element method for the numerical solution of a two-dimensional mean field model of superconducting vortices. An advantage of our method is that it works for any unstructured regular triangulation. A simple convergence analysis is given without resorting to the discrete maximum principle. Numerical examples are also presented.

Mathematical analysis for the peridynamic nonlocal continuum theory

Qiang DuKun Zhou — 2011

ESAIM: Mathematical Modelling and Numerical Analysis

We develop a functional analytical framework for a linear peridynamic model of a spring network system in any space dimension. Various properties of the peridynamic operators are examined for general micromodulus functions. These properties are utilized to establish the well-posedness of both the stationary peridynamic model and the Cauchy problem of the time dependent peridynamic model. The connections to the classical elastic models are also provided.

Global convergence property of modified Levenberg-Marquardt methods for nonsmooth equations

Shou-qiang DuYan Gao — 2011

Applications of Mathematics

In this paper, we discuss the globalization of some kind of modified Levenberg-Marquardt methods for nonsmooth equations and their applications to nonlinear complementarity problems. In these modified Levenberg-Marquardt methods, only an approximate solution of a linear system at each iteration is required. Under some mild assumptions, the global convergence is shown. Finally, numerical results show that the present methods are promising.

Page 1

Download Results (CSV)