Hermite pseudospectral method for nonlinear partial differential equations
- Volume: 34, Issue: 4, page 859-872
- ISSN: 0764-583X
Access Full Article
topHow to cite
topGuo, Ben-Yu, and Xu, Cheng-Long. "Hermite pseudospectral method for nonlinear partial differential equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.4 (2000): 859-872. <http://eudml.org/doc/194016>.
@article{Guo2000,
author = {Guo, Ben-Yu, Xu, Cheng-Long},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Hermite polynomial interpolation; pseudospectral method; Burgers equation; stability; convergence; numerical results},
language = {eng},
number = {4},
pages = {859-872},
publisher = {Dunod},
title = {Hermite pseudospectral method for nonlinear partial differential equations},
url = {http://eudml.org/doc/194016},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Guo, Ben-Yu
AU - Xu, Cheng-Long
TI - Hermite pseudospectral method for nonlinear partial differential equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 4
SP - 859
EP - 872
LA - eng
KW - Hermite polynomial interpolation; pseudospectral method; Burgers equation; stability; convergence; numerical results
UR - http://eudml.org/doc/194016
ER -
References
top- [1] R. A. Adams, Sobolev Spaces. Academic Press, New York (1975). Zbl0314.46030MR450957
- [2] C. Bernardi and Y. Maday, Spectral methods, in Techniques of Scientific Computing, Part 2, P.G. Ciarlet and J.L. Lions Eds., Elsevier, Amsterdam (1997) 209-486. MR1470226
- [3] O. Coulaud, D. Funaro and O. Kavian, Laguerre spectral approximation of elliptic problems in exterior domains. Comp. Mech. Appl. Mech. Eng. 80 (1990) 451-458. Zbl0734.73090MR1067965
- [4] R. Courant K. O. Friedrichs and H. Levy, Über die partiellen differezengleichungen der mathematischen physik. Math. Annal. 100 (1928) 32-74. Zbl54.0486.01MR1512478JFM54.0486.01
- [5] D. Funaro, Estimates of Laguerre spectral projectors in Sobolev spaces, in Orthogonal Polynomials and Their Applications, C. Brezinski, L. Gori and A. Ronveaux Eds., Scientific Publishing Co. (1991) 263-266. Zbl0842.46017MR1270241
- [6] D. Funaro and O. Kavian, Approximation of some diffusion evolution equations in unbounded domains by Hermite functions. Math. Comp. 57 (1990) 597-619. Zbl0764.35007MR1094949
- [7] B. Y. Guo, A class of difference schemes of two-dimensional viscous fluid flow. TR. SUST (1965). Also see Acta. Math. Sinica. 17 (1974) 242-258. Zbl0391.76027MR458929
- [8] B. Y. Guo, Generalized stability of discretization and its applications to numerical solution of nonlinear differential equations. Contemp. Math. 163 (1994) 33-54. Zbl0811.65071MR1276073
- [9] B. Y. Guo, Spectral Methods and Their Applications. World Scientific, Singapore (1998). Zbl0906.65110MR1641586
- [10] B. Y. Guo, Error estimation for Hermite spectral method for nonlinear partial differential equations. Math. Comp. 68 (1999) 1067-1078. Zbl0918.65069MR1627789
- [11] A. L. Levin and D. S. Lubinsky, Christoffel functions, orthogonal polynomials, and Nevaiś conjecture for Freud weights. Constr. Approx. 8 (1992) 461-533. Zbl0762.41011MR1194029
- [12] D. S. Lubinsky and F. Moricz, The weighted Lp-norm of orthogonal polynormal of Freud weights. J. Approx. Theory 77 (1994) 42-50. Zbl0801.42018MR1273698
- [13] Y. Maday, B. Pernaud-Thomas and H. Vandeven, Une réhabilitation des méthodes spectrales de type Laguerre. Rech. Aérospat. 6 (1985) 353-379. Zbl0604.42026MR850680
- [14] R. D. Richitmeyer and K. W. Morton, Finite Difference Methods for Initial Value Problems, 2nd ed., Interscience, New York (1967). Zbl0155.47502
- [15] H. J. Stetter, Stability of nonlinear discretization algorithms, in Numerical Solutions of Partial Differential Equations, J. Bramble Ed., Academic Press, New York (1966) 111-123. Zbl0149.11603MR205495
- [16] G. Szegö, Orthogonal Polynomials. Amer. Math. Soc., New York (1967). JFM65.0278.03
- [17] A. F. Timan, Theory of Approximation of Functions of a Real Variable. Pergamon Press, Oxford (1963). Zbl0117.29001MR192238
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.