On the distribution of free path lengths for the periodic Lorentz gas II
François Golse; Bernt Wennberg
- Volume: 34, Issue: 6, page 1151-1163
- ISSN: 0764-583X
Access Full Article
topHow to cite
topReferences
top- [1] C. Boldrighini, L.A. Bunimovich and Ya. G. Sinai, On the Boltzmann equation for the Lorentz gas. J. Statist. Phys. 32 (1983) 477-501. Zbl0583.76092MR725107
- [2] J. Bourgain, F. Golse and B. Wennberg, On the distribution of free path lengths for the periodic Lorentz gas. Comm. Math. Phys. 190 (1998) 491-508. Zbl0910.60082MR1600299
- [3] L.A. Bunimovich and Ya.G. Sinai, Markov Partitions of Dispersed Billiards. Comm. Math. Phys. 73 (1980) 247-280. Zbl0453.60098MR597749
- [4] L.A. Bunimovich and Ya.G. Sinai, Statistical properties of the Lorentz gas with periodic configurations of scatterers. Comm. Math. Phys. 78 (1981) 479-497. Zbl0459.60099MR606459
- [5] L.A. Bunimovich, Ya.G. Sinai and N.I. Chernov, Markov partitions for two-dimensional hyperbolic billiards. Russian Math. Surveys 45 (1990) 105-152. Zbl0721.58036MR1071936
- [6] L.A. Bunimovich, Ya.G. Sinai and N.L. Chernov, Statistical properties of two-dimensional hyperbolic billiards. Russian Math. Surveys 46 (1991) 47-106. Zbl0780.58029MR1138952
- [7] H.S. Dumas, L. Dumas and F. Golse, Remarks on the notion of mean free path for a periodic array of spherical obstacles. J. Statist Phys. 87 (1997) 943-950. Zbl0952.82512MR1459048
- [8] G. Gallavotti, Rigorous theory of the Boltzmann equation in the Lorentz gas. Nota Interna No. 358, Istituto di Fisica, Università di Roma (1972).
- [9] F. Golse, Transport dans les milieux composites fortement contrastés. I. Le modèle du billard. Ann. Inst. H. Poincaré Phys. Théor. 61 (1994) 381-410. Zbl0813.35089MR1311536
- [10] H. Spohn, The Lorentz flight process converges to a random flight process. Comm. Math. Phys. 60 (1978) 277-290. Zbl0381.60099MR496299