On the distribution of free path lengths for the periodic Lorentz gas II

François Golse; Bernt Wennberg

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2000)

  • Volume: 34, Issue: 6, page 1151-1163
  • ISSN: 0764-583X

How to cite

top

Golse, François, and Wennberg, Bernt. "On the distribution of free path lengths for the periodic Lorentz gas II." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.6 (2000): 1151-1163. <http://eudml.org/doc/194031>.

@article{Golse2000,
author = {Golse, François, Wennberg, Bernt},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {kinetic theory; mean free path; Boltzmann-Grad scaling; limiting distribution; linear Boltzmann type transport equation; Boltzmann-Grad limit; periodic Lorentz gas},
language = {eng},
number = {6},
pages = {1151-1163},
publisher = {Dunod},
title = {On the distribution of free path lengths for the periodic Lorentz gas II},
url = {http://eudml.org/doc/194031},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Golse, François
AU - Wennberg, Bernt
TI - On the distribution of free path lengths for the periodic Lorentz gas II
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 6
SP - 1151
EP - 1163
LA - eng
KW - kinetic theory; mean free path; Boltzmann-Grad scaling; limiting distribution; linear Boltzmann type transport equation; Boltzmann-Grad limit; periodic Lorentz gas
UR - http://eudml.org/doc/194031
ER -

References

top
  1. [1] C. Boldrighini, L.A. Bunimovich and Ya. G. Sinai, On the Boltzmann equation for the Lorentz gas. J. Statist. Phys. 32 (1983) 477-501. Zbl0583.76092MR725107
  2. [2] J. Bourgain, F. Golse and B. Wennberg, On the distribution of free path lengths for the periodic Lorentz gas. Comm. Math. Phys. 190 (1998) 491-508. Zbl0910.60082MR1600299
  3. [3] L.A. Bunimovich and Ya.G. Sinai, Markov Partitions of Dispersed Billiards. Comm. Math. Phys. 73 (1980) 247-280. Zbl0453.60098MR597749
  4. [4] L.A. Bunimovich and Ya.G. Sinai, Statistical properties of the Lorentz gas with periodic configurations of scatterers. Comm. Math. Phys. 78 (1981) 479-497. Zbl0459.60099MR606459
  5. [5] L.A. Bunimovich, Ya.G. Sinai and N.I. Chernov, Markov partitions for two-dimensional hyperbolic billiards. Russian Math. Surveys 45 (1990) 105-152. Zbl0721.58036MR1071936
  6. [6] L.A. Bunimovich, Ya.G. Sinai and N.L. Chernov, Statistical properties of two-dimensional hyperbolic billiards. Russian Math. Surveys 46 (1991) 47-106. Zbl0780.58029MR1138952
  7. [7] H.S. Dumas, L. Dumas and F. Golse, Remarks on the notion of mean free path for a periodic array of spherical obstacles. J. Statist Phys. 87 (1997) 943-950. Zbl0952.82512MR1459048
  8. [8] G. Gallavotti, Rigorous theory of the Boltzmann equation in the Lorentz gas. Nota Interna No. 358, Istituto di Fisica, Università di Roma (1972). 
  9. [9] F. Golse, Transport dans les milieux composites fortement contrastés. I. Le modèle du billard. Ann. Inst. H. Poincaré Phys. Théor. 61 (1994) 381-410. Zbl0813.35089MR1311536
  10. [10] H. Spohn, The Lorentz flight process converges to a random flight process. Comm. Math. Phys. 60 (1978) 277-290. Zbl0381.60099MR496299

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.