Inverse coefficient problems for variational inequalities : optimality conditions and numerical realization
- Volume: 35, Issue: 1, page 129-152
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topHintermüller, Michael. "Inverse coefficient problems for variational inequalities : optimality conditions and numerical realization." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 35.1 (2001): 129-152. <http://eudml.org/doc/194039>.
@article{Hintermüller2001,
abstract = {We consider the identification of a distributed parameter in an elliptic variational inequality. On the basis of an optimal control problem formulation, the application of a primal-dual penalization technique enables us to prove the existence of multipliers giving a first order characterization of the optimal solution. Concerning the parameter we consider different regularity requirements. For the numerical realization we utilize a complementarity function, which allows us to rewrite the optimality conditions as a set of equalities. Finally, numerical results obtained from a least squares type algorithm emphasize the feasibility of our approach.},
author = {Hintermüller, Michael},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {bilevel problem; complementarity function; inverse problem; optimal control; variational inequality; elliptic variational inequality; inverse elastohydrodynamic lubrication problem; least squares method; primal-dual penalization technique; complementarity functions; algorithm; Gauss-Newton method; numerical tests},
language = {eng},
number = {1},
pages = {129-152},
publisher = {EDP-Sciences},
title = {Inverse coefficient problems for variational inequalities : optimality conditions and numerical realization},
url = {http://eudml.org/doc/194039},
volume = {35},
year = {2001},
}
TY - JOUR
AU - Hintermüller, Michael
TI - Inverse coefficient problems for variational inequalities : optimality conditions and numerical realization
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2001
PB - EDP-Sciences
VL - 35
IS - 1
SP - 129
EP - 152
AB - We consider the identification of a distributed parameter in an elliptic variational inequality. On the basis of an optimal control problem formulation, the application of a primal-dual penalization technique enables us to prove the existence of multipliers giving a first order characterization of the optimal solution. Concerning the parameter we consider different regularity requirements. For the numerical realization we utilize a complementarity function, which allows us to rewrite the optimality conditions as a set of equalities. Finally, numerical results obtained from a least squares type algorithm emphasize the feasibility of our approach.
LA - eng
KW - bilevel problem; complementarity function; inverse problem; optimal control; variational inequality; elliptic variational inequality; inverse elastohydrodynamic lubrication problem; least squares method; primal-dual penalization technique; complementarity functions; algorithm; Gauss-Newton method; numerical tests
UR - http://eudml.org/doc/194039
ER -
References
top- [1] V. Barbu, Optimal Control of Variational Inequalities. Res. Notes Math., Pitman, 100 (1984). Zbl0574.49005MR742624
- [2] B. Bayada and M. El Aalaoui Talibi, Control by the coefficients in a variational inequality: the inverse elastohydrodynamic lubrication problem. Report no. 173, I.N.S.A. Lyon (1994).
- [3] A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam (1978). Zbl0404.35001MR503330
- [4] M. Bergounioux, Optimal control problems governed by abstract elliptic variational inequalities with state constraints. SIAM J. Control Optim. 36 (1998) 273–289. Zbl0919.49002
- [5] M. Bergounioux and H. Dietrich, Optimal control problems governed by obstacle type variational inequalities: a dual regularization penalization approach. J. Convex Anal. 5 (1998) 329–351. Zbl0919.49003
- [6] M. Bergounioux, K. Ito and K. Kunisch, Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim. 37 (1999) 1176–1194. Zbl0937.49017
- [7] M. Bergounioux and F. Mignot, Optimal control of obstacle problems: existence of Lagrange multipliers. ESAIM: COCV 5 (2000) 45–70. Zbl0934.49008
- [8] A. Bermudez and C. Saguez, Optimality conditions for optimal control problems of variational inequalities, in: Control problems for systems described by partial differential equations and applications. I. Lasiecka and R. Triggiani Eds., Lect. Notes Control and Information Sciences, Springer, Berlin (1987). Zbl0627.49011MR910512
- [9] G. Capriz and G. Cimatti, Free boundary problems in the theory of hydrodynamic lubrication: a survey, in: Free Boundary Problems: Theory and Applications, Vol. II, A. Fasano and M. Primicerio Eds., Res. Notes Math., Pitman, 79 (1983). Zbl0557.76038MR714938
- [10] G. Cimatti, On a problem of the theory of lubrication governed by a variational inequality. Appl. Math. Optim. 3 (1977) 227–242. Zbl0404.76036
- [11] F. Clarke, Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983). Zbl0582.49001MR709590
- [12] J. Dennis and R. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Series in Computational Mathematics, Prentice-Hall, Englewood Cliffs, New Jersey (1983). Zbl0579.65058MR702023
- [13] F. Facchinei, A. Fischer and C. Kanzow, A semismooth Newton method for variational inequalities: the case of box constraints, in Complementarity and Variational Problems, State of the Art, M. Ferris and J. Pang Eds., SIAM, Philadelphia (1997). Zbl0886.90152MR1445073
- [14] F. Facchinei, H. Jiang and L. Qi, A smoothing method for mathematical programs with equilibrium constraints. Math. Prog. 85 (1999) 107–134. Zbl0959.65079
- [15] J. Guo, A variational inequality associated with a lubrication problem, IMA Preprint Series, no. 530 (1989).
- [16] B. Hu, A quasi-variational inequality arising in elastohydrodynamics. SIAM J. Math. Anal. 21 (1990) 18–36. Zbl0718.35101
- [17] K. Ito and K. Kunisch, On the injectivity and linearization of the coefficient-to-solution mapping for elliptic boundary value problems. J. Math. Anal. Appl. 188 (1994) 1040–1066. Zbl0817.35021
- [18] K. Ito and K. Kunisch, Optimal control of elliptic variational inequalities. Appl. Math. Optim. 41 (2000) 343–364. Zbl0960.49003
- [19] W. Liu and J. Rubio, Optimality conditions for strongly monotone variational inequalities. Appl. Math. Optim. 27 (1993) 291–312. Zbl0779.49012
- [20] Z. Luo, J. Pang and D. Ralph, Mathematical Programs with Equilibrium Constraints. Cambridge University Press, New York (1996). Zbl0898.90006MR1419501
- [21] Z. Luo and P. Tseng, A new class of merit functions for the nonlinear complementarity problem, in Complementarity and Variational Problems, State of the Art, M. Ferris and J. Pang Eds., SIAM, Philadelphia (1997). Zbl0886.90158MR1445081
- [22] F. Mignot and J.P. Puel, Optimal control in some variational inequalities. SIAM J. Control Optim. 22 (1984) 466–476. Zbl0561.49007
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.