Optimal control of obstacle problems : existence of Lagrange multipliers

Maïtine Bergounioux; Fulbert Mignot

ESAIM: Control, Optimisation and Calculus of Variations (2000)

  • Volume: 5, page 45-70
  • ISSN: 1292-8119

How to cite

top

Bergounioux, Maïtine, and Mignot, Fulbert. "Optimal control of obstacle problems : existence of Lagrange multipliers." ESAIM: Control, Optimisation and Calculus of Variations 5 (2000): 45-70. <http://eudml.org/doc/90578>.

@article{Bergounioux2000,
author = {Bergounioux, Maïtine, Mignot, Fulbert},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {variational inequalities; first-order optimality systems; Lagrange multipliers},
language = {eng},
pages = {45-70},
publisher = {EDP Sciences},
title = {Optimal control of obstacle problems : existence of Lagrange multipliers},
url = {http://eudml.org/doc/90578},
volume = {5},
year = {2000},
}

TY - JOUR
AU - Bergounioux, Maïtine
AU - Mignot, Fulbert
TI - Optimal control of obstacle problems : existence of Lagrange multipliers
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2000
PB - EDP Sciences
VL - 5
SP - 45
EP - 70
LA - eng
KW - variational inequalities; first-order optimality systems; Lagrange multipliers
UR - http://eudml.org/doc/90578
ER -

References

top
  1. [1] D.R. Adams, S. Lenhart and J. Yong, Optimal control of variational inequalities. Appl. Math. Optim. 38 ( 1998) 121-140. Zbl0914.49005MR1624661
  2. [2] V. Barbu, Optimal control of variational inequalities. Pitman, Boston, Res. Notes Math. 100 ( 1984). Zbl0574.49005MR742624
  3. [3] M. Bergounioux, Optimal control of an obstacle problem. Appl. Math. Optim. 36 ( 1997) 147-172. Zbl0934.49008MR1455432
  4. [4] M. Bergounioux, Optimal control of problems governed by abstract variational inequalities with state constraints. SIAM J. Control Optim. 36 ( 1998) 273-289. Zbl0919.49002MR1616590
  5. [5] M. Bergounioux, Augmented lagrangian method for distributed optimal control problems with state constraints. J. Optim. Theory Appl. 78 ( 1993) 493-521. Zbl0796.49003MR1240433
  6. [6] M. Bergounioux and H. Dietrich, Optimal control of problems governed by obstacle type variational inequalities: A dual regularization-penalization approach. J. Convex Anal. 5 ( 1998) 329-351. Zbl0919.49003MR1670285
  7. [7] M. Bergounioux, M. Haddou, M. Hintermueller and K. Kunisch, A comparison of interior point methods and a Moreau-Yosida based active set strategy for constrained optimal control problems. Report 98-15 Université d'Orléans ( 1998). Zbl1001.49034
  8. [8] M. Bergounioux and H. Zidani, Pontryagin principle for problems governed by parabolic variational inequalities. SIAM J. Control Optim. 37 ( 1999) 1273-1290. Zbl0938.49021MR1691941
  9. [9] A. Bermudez and C. Saguez, Optimal control of variational inequalities. Optimality conditions and numerical methods. Collection Free Boundary Problems, Application and Theory, Vol. IV. Maubusson, Res. Notes Math. 121 ( 1984) 478-487. MR903297
  10. [10] A. Bermudez and C. Saguez, Optimal control of a Signorini Problem. SIAM J. Control Optim. 25 ( 1987) 576-582. Zbl0617.49011MR885186
  11. [11] P.G. Ciarlet and P.A. Raviart, Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Engrg. 2 ( 1973) 17-31. Zbl0251.65069MR375802
  12. [12] W. Hackbusch, Elliptic Differential Equations, Theory and Numerical Treatment. Springer Verlag, Berlin, Ser. Comput. Math. 18 ( 1992). Zbl0755.35021MR1197118
  13. [13] K. Ito and K. Kunisch, An augmented Lagrangian technics for variational inequalities. Appl. Math. Optim. 21 ( 1990) 223-241. Zbl0692.49008MR1036586
  14. [14] K. Ito and K. Kunisch, Optimal control of elliptic variational inequalities, to appear. Zbl0960.49003MR1739400
  15. [15] S. Kurcyusz, On the existence and nonexistence of Lagrange multipliers in Banach spaces. J. Optim. Theory Appl. 5 ( 1976). 81-110. Zbl0309.49010MR424249
  16. [16] F. Mignot, Contrôle dans les inéquations variationnelles elliptiques. J. Funct. Anal. 22 ( 1976) 130-185. Zbl0364.49003MR423155
  17. [17] F. Mignot and J.P. Puel, Optimal control in some variational inequalities. SIAM J. Control Optim. 22 ( 1984) 466-476. Zbl0561.49007MR739836
  18. [18] F. Mignot and J.P. Puel, Contrôle optimal d'un système gouverné par une inéquation variationnelle parabolique. C. R. Acad. Sci. Paris Sér. I Math. 298 ( 1984) 277-280. Zbl0561.49008MR745322
  19. [19] D. Tiba and F. Tröltzsch, Error estimates for the discretization of state constrained convex control problems. Num. Funct. Anal. Optim. 17 ( 1996) 1005-1028. Zbl0899.49013MR1421304
  20. [20] L. Wenbin and J.E. Rubio, Optimality conditions for strongly monotone variational inequalities. Appl. Math. Optim. 27 ( 1993) 291-312. Zbl0779.49012MR1201626
  21. [21] J. Zowe and S. Kurcyusz, Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5 ( 1979) 49-62. Zbl0401.90104MR526427

Citations in EuDML Documents

top
  1. Michael Hintermüller, Inverse coefficient problems for variational inequalities : optimality conditions and numerical realization
  2. Michael Hintermüller, Inverse Coefficient Problems for Variational Inequalities: Optimality Conditions and Numerical Realization
  3. Anton Schiela, Daniel Wachsmuth, Convergence analysis of smoothing methods for optimal control of stationary variational inequalities with control constraints
  4. Karl Kunisch, Daniel Wachsmuth, Sufficient optimality conditions and semi-smooth newton methods for optimal control of stationary variational inequalities
  5. Karl Kunisch, Daniel Wachsmuth, Sufficient optimality conditions and semi-smooth newton methods for optimal control of stationary variational inequalities

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.