Optimal control of obstacle problems : existence of Lagrange multipliers
Maïtine Bergounioux; Fulbert Mignot
ESAIM: Control, Optimisation and Calculus of Variations (2000)
- Volume: 5, page 45-70
- ISSN: 1292-8119
Access Full Article
topHow to cite
topBergounioux, Maïtine, and Mignot, Fulbert. "Optimal control of obstacle problems : existence of Lagrange multipliers." ESAIM: Control, Optimisation and Calculus of Variations 5 (2000): 45-70. <http://eudml.org/doc/90578>.
@article{Bergounioux2000,
author = {Bergounioux, Maïtine, Mignot, Fulbert},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {variational inequalities; first-order optimality systems; Lagrange multipliers},
language = {eng},
pages = {45-70},
publisher = {EDP Sciences},
title = {Optimal control of obstacle problems : existence of Lagrange multipliers},
url = {http://eudml.org/doc/90578},
volume = {5},
year = {2000},
}
TY - JOUR
AU - Bergounioux, Maïtine
AU - Mignot, Fulbert
TI - Optimal control of obstacle problems : existence of Lagrange multipliers
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2000
PB - EDP Sciences
VL - 5
SP - 45
EP - 70
LA - eng
KW - variational inequalities; first-order optimality systems; Lagrange multipliers
UR - http://eudml.org/doc/90578
ER -
References
top- [1] D.R. Adams, S. Lenhart and J. Yong, Optimal control of variational inequalities. Appl. Math. Optim. 38 ( 1998) 121-140. Zbl0914.49005MR1624661
- [2] V. Barbu, Optimal control of variational inequalities. Pitman, Boston, Res. Notes Math. 100 ( 1984). Zbl0574.49005MR742624
- [3] M. Bergounioux, Optimal control of an obstacle problem. Appl. Math. Optim. 36 ( 1997) 147-172. Zbl0934.49008MR1455432
- [4] M. Bergounioux, Optimal control of problems governed by abstract variational inequalities with state constraints. SIAM J. Control Optim. 36 ( 1998) 273-289. Zbl0919.49002MR1616590
- [5] M. Bergounioux, Augmented lagrangian method for distributed optimal control problems with state constraints. J. Optim. Theory Appl. 78 ( 1993) 493-521. Zbl0796.49003MR1240433
- [6] M. Bergounioux and H. Dietrich, Optimal control of problems governed by obstacle type variational inequalities: A dual regularization-penalization approach. J. Convex Anal. 5 ( 1998) 329-351. Zbl0919.49003MR1670285
- [7] M. Bergounioux, M. Haddou, M. Hintermueller and K. Kunisch, A comparison of interior point methods and a Moreau-Yosida based active set strategy for constrained optimal control problems. Report 98-15 Université d'Orléans ( 1998). Zbl1001.49034
- [8] M. Bergounioux and H. Zidani, Pontryagin principle for problems governed by parabolic variational inequalities. SIAM J. Control Optim. 37 ( 1999) 1273-1290. Zbl0938.49021MR1691941
- [9] A. Bermudez and C. Saguez, Optimal control of variational inequalities. Optimality conditions and numerical methods. Collection Free Boundary Problems, Application and Theory, Vol. IV. Maubusson, Res. Notes Math. 121 ( 1984) 478-487. MR903297
- [10] A. Bermudez and C. Saguez, Optimal control of a Signorini Problem. SIAM J. Control Optim. 25 ( 1987) 576-582. Zbl0617.49011MR885186
- [11] P.G. Ciarlet and P.A. Raviart, Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Engrg. 2 ( 1973) 17-31. Zbl0251.65069MR375802
- [12] W. Hackbusch, Elliptic Differential Equations, Theory and Numerical Treatment. Springer Verlag, Berlin, Ser. Comput. Math. 18 ( 1992). Zbl0755.35021MR1197118
- [13] K. Ito and K. Kunisch, An augmented Lagrangian technics for variational inequalities. Appl. Math. Optim. 21 ( 1990) 223-241. Zbl0692.49008MR1036586
- [14] K. Ito and K. Kunisch, Optimal control of elliptic variational inequalities, to appear. Zbl0960.49003MR1739400
- [15] S. Kurcyusz, On the existence and nonexistence of Lagrange multipliers in Banach spaces. J. Optim. Theory Appl. 5 ( 1976). 81-110. Zbl0309.49010MR424249
- [16] F. Mignot, Contrôle dans les inéquations variationnelles elliptiques. J. Funct. Anal. 22 ( 1976) 130-185. Zbl0364.49003MR423155
- [17] F. Mignot and J.P. Puel, Optimal control in some variational inequalities. SIAM J. Control Optim. 22 ( 1984) 466-476. Zbl0561.49007MR739836
- [18] F. Mignot and J.P. Puel, Contrôle optimal d'un système gouverné par une inéquation variationnelle parabolique. C. R. Acad. Sci. Paris Sér. I Math. 298 ( 1984) 277-280. Zbl0561.49008MR745322
- [19] D. Tiba and F. Tröltzsch, Error estimates for the discretization of state constrained convex control problems. Num. Funct. Anal. Optim. 17 ( 1996) 1005-1028. Zbl0899.49013MR1421304
- [20] L. Wenbin and J.E. Rubio, Optimality conditions for strongly monotone variational inequalities. Appl. Math. Optim. 27 ( 1993) 291-312. Zbl0779.49012MR1201626
- [21] J. Zowe and S. Kurcyusz, Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5 ( 1979) 49-62. Zbl0401.90104MR526427
Citations in EuDML Documents
top- Michael Hintermüller, Inverse coefficient problems for variational inequalities : optimality conditions and numerical realization
- Michael Hintermüller, Inverse Coefficient Problems for Variational Inequalities: Optimality Conditions and Numerical Realization
- Anton Schiela, Daniel Wachsmuth, Convergence analysis of smoothing methods for optimal control of stationary variational inequalities with control constraints
- Karl Kunisch, Daniel Wachsmuth, Sufficient optimality conditions and semi-smooth newton methods for optimal control of stationary variational inequalities
- Karl Kunisch, Daniel Wachsmuth, Sufficient optimality conditions and semi-smooth newton methods for optimal control of stationary variational inequalities
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.