The boundary behavior of a composite material

Maria Neuss-Radu

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2001)

  • Volume: 35, Issue: 3, page 407-435
  • ISSN: 0764-583X

Abstract

top
In this paper, we study how solutions to elliptic problems with periodically oscillating coefficients behave in the neighborhood of the boundary of a domain. We extend the results known for flat boundaries to domains with curved boundaries in the case of a layered medium. This is done by generalizing the notion of boundary layer and by defining boundary correctors which lead to an approximation of order ε in the energy norm.

How to cite

top

Neuss-Radu, Maria. "The boundary behavior of a composite material." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 35.3 (2001): 407-435. <http://eudml.org/doc/194056>.

@article{Neuss2001,
abstract = {In this paper, we study how solutions to elliptic problems with periodically oscillating coefficients behave in the neighborhood of the boundary of a domain. We extend the results known for flat boundaries to domains with curved boundaries in the case of a layered medium. This is done by generalizing the notion of boundary layer and by defining boundary correctors which lead to an approximation of order $\{\varepsilon \}$ in the energy norm.},
author = {Neuss-Radu, Maria},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {homogenization; generalized boundary layers; energy error estimates; elliptic problems with periodically oscillating coefficients; domains with curved boundaries; layered medium},
language = {eng},
number = {3},
pages = {407-435},
publisher = {EDP-Sciences},
title = {The boundary behavior of a composite material},
url = {http://eudml.org/doc/194056},
volume = {35},
year = {2001},
}

TY - JOUR
AU - Neuss-Radu, Maria
TI - The boundary behavior of a composite material
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2001
PB - EDP-Sciences
VL - 35
IS - 3
SP - 407
EP - 435
AB - In this paper, we study how solutions to elliptic problems with periodically oscillating coefficients behave in the neighborhood of the boundary of a domain. We extend the results known for flat boundaries to domains with curved boundaries in the case of a layered medium. This is done by generalizing the notion of boundary layer and by defining boundary correctors which lead to an approximation of order ${\varepsilon }$ in the energy norm.
LA - eng
KW - homogenization; generalized boundary layers; energy error estimates; elliptic problems with periodically oscillating coefficients; domains with curved boundaries; layered medium
UR - http://eudml.org/doc/194056
ER -

References

top
  1. [1] R.A. Adams, Sobolev Spaces. Academic Press, New York, San Francisco, London (1975). Zbl0314.46030MR450957
  2. [2] R. Abraham, J.E. Marsden and T. Ratiu, Manifolds, tensor analysis, and applications. 2nd edn. Appl. Math. Sci. 75 Springer-Verlag, New York (1988). Zbl0875.58002MR960687
  3. [3] G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482–1518. Zbl0770.35005
  4. [4] G. Allaire and M. Amar, Boundary layer tails in periodic homogenization. ESAIM: COCV 4 (1999) 209–243. Zbl0922.35014
  5. [5] I. Babuska, Solution of interface problems by homogenization I. SIAM J. Math. Anal. 7 (1976) 603–634. Zbl0343.35022
  6. [6] I. Babuska, Solution of interface problems by homogenization II. SIAM J. Math. Anal. 7 (1976) 635–645. Zbl0343.35023
  7. [7] N. Bakhvalov and G. Panasenko, Homogenization: Averaging processes in periodic media. Mathematics and its Applications 36, Kluwer Academic Publishers, Dordrecht (1990). Zbl0692.73012MR1112788
  8. [8] A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures. North-Holland, Amsterdam (1978). Zbl0404.35001MR503330
  9. [9] A. Bensoussan, J.L. Lions and G. Papanicolau, Boundary layer analysis in homogenization of diffusion equations with Dirichlet conditions on the half space, in Proc. Internat. Symposium SDE, K. Ito Ed. J. Wiley, New York (1978) 21–40. Zbl0411.60078
  10. [10] F. Blanc and S.A. Nazarov, Asymptotics of solutions to the Poisson problem in a perforated domain with corners. J. Math. Pures Appl. 76 (1997) 893–911. Zbl0906.35011
  11. [11] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Springer-Verlag, Berlin, Heidelberg, New York (1983). Zbl0361.35003MR737190
  12. [12] W. Jäger and A. Mikelic, On the boundary conditions at the contact interface between a porous medium and a free fluid. Ann. Sci. Norm. Sup. Pisa, Serie IV 23 (1996) 404–465. Zbl0878.76076
  13. [13] V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of differential operators and integral functionals. Springer-Verlag, Berlin Heidelberg, New York (1994). Zbl0838.35001MR1329546
  14. [14] J.L. Lions, Some methods in mathematical analysis of systems and their Control. Science Press, Beijing, Gordon and Breach, New York (1981). Zbl0542.93034MR664760
  15. [15] S. Moskow and M. Vogelius, First-order corrections to the homogenised eigenvalues of a periodic composite medium. A convergence proof, in Proc. Roy. Soc. Edinburgh., Sect A 127 6 (1997) 1263–1299. Zbl0888.35011
  16. [16] N. Neuss, W. Jäger and G. Wittum, Homogenization and Multigrid. Preprint 1998-04, SFB 359, University of Heidelberg (1998). Zbl0992.35013MR1821563
  17. [17] M. Neuss-Radu, A result on the decay of the boundary layers in the homogenization theory. Asympto. Anal. 23 (2000) 313–328. Zbl0970.35006
  18. [18] G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608–623. Zbl0688.35007
  19. [19] O.A. Oleinik, A.S. Shamaev and G.A. Yosifian, Mathematical problems in elasticity and Homogenization. Studies in Mathematics and its Applications 26, North-Holland, Amsterdam (1992). Zbl0768.73003MR1195131
  20. [20] J. Sanchez-Huber and E. Sanchez-Palencia, Exercices sur les méthodes asymptotiques et l’homogénéisation. Masson, Paris (1993). 
  21. [21] E. Sanchez-Palencia, Non-homogenous media and vibration theory. Lect. Notes Phys. 127, Springer-Verlag, Berlin (1980). Zbl0432.70002MR578345
  22. [22] J. Wloka, Partielle differentialgleichungen. Teubner-Verlag, Stuttgart (1982). Zbl0482.35001MR652934

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.