Boundary layer tails in periodic homogenization
ESAIM: Control, Optimisation and Calculus of Variations (1999)
- Volume: 4, page 209-243
- ISSN: 1292-8119
Access Full Article
topHow to cite
topAllaire, Grégoire, and Amar, Micol. "Boundary layer tails in periodic homogenization." ESAIM: Control, Optimisation and Calculus of Variations 4 (1999): 209-243. <http://eudml.org/doc/90541>.
@article{Allaire1999,
author = {Allaire, Grégoire, Amar, Micol},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {rectangular domains having either fixed or oscillating boundary; asymptotic expansion; homogenized equation; effective Fourier boundary conditions},
language = {eng},
pages = {209-243},
publisher = {EDP Sciences},
title = {Boundary layer tails in periodic homogenization},
url = {http://eudml.org/doc/90541},
volume = {4},
year = {1999},
}
TY - JOUR
AU - Allaire, Grégoire
AU - Amar, Micol
TI - Boundary layer tails in periodic homogenization
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1999
PB - EDP Sciences
VL - 4
SP - 209
EP - 243
LA - eng
KW - rectangular domains having either fixed or oscillating boundary; asymptotic expansion; homogenized equation; effective Fourier boundary conditions
UR - http://eudml.org/doc/90541
ER -
References
top- [1] T. Abboud and H. Ammari, Diffraction at a curved grating, TM and TE cases, homogenization. J. Math. Anal. Appl. 202 ( 1996) 995-1206. Zbl0865.35122MR1408364
- [2] Y. Achdou, Effect d'un revêtement métallisé mince sur la réflexion d'une onde électromagnétique. C.R. Acad. Sci. Paris Sér. I Math. 314 ( 1992) 217-222. Zbl0800.78017MR1150836
- [3] Y. Achdou and O. Pironneau, Domain decomposition and wall laws. C.R. Acad. Sci. Paris Sér. I Math. 320 ( 1995) 541-547. Zbl0834.76014MR1322334
- [4] Y. Achdou and O. Pironneau, A 2nd order condition for flow over rough walls, in Proc. Int. Conf. on Nonlinear Diff. Eqs. and Appl., Bangalore, Shrikant Ed. ( 1996).
- [5] G. Allaire and G. Bal, Homogenization of the criticality spectral equation in neutron transport. M2AN to appear. Zbl0931.35010MR1726482
- [6] G. Allaire and C. Conca, Bloch wave homogenization and spectral asymptotic analysis. J. Math. Pures et Appl. 77 ( 1998) 153-208. Zbl0901.35005MR1614641
- [7] G. Allaire and C. Conca, Boundary layers in the homogenization of a spectral problem in fluid-solid structures. SIAM J. Math. Anal. 29 ( 1998) 343-379. Zbl0918.35018MR1616495
- [8] M. Avellaneda and F.-H. Lin, Homogenization of elliptic problems with Lp boundary data. Appl. Math. Optim. 15 ( 1987) 93-107. Zbl0644.35034MR868901
- [9] M. Avellaneda and F.-H. Lin, Compactness methods in the theory of homogenization. C.P.A.M., XL ( 1987) 803-847. Zbl0632.35018MR910954
- [10] I. Babu_ka, Solution of interface problems by homogenization I, II, III. SIAM J. Math. Anal. 7 ( 1976) 603-634 and 635-645; 8 ( 1977) 923-937. Zbl0343.35023MR509282
- [11] N. Bakhvalov and G. Panasenko, Homogenization, averaging processes in periodic media. Kluwer Academic Publishers, Dordrecht, Mathematics and its Applications 36 ( 1990). Zbl0692.73012MR1112788
- [12] G. Bal, First-order corrector for the homogenization of the criticality eigenvalue problem in the even parity formulation of the neutron transport, to appear. Zbl0937.35007MR1718300
- [13] A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures. North Holland, Amsterdam ( 1978). Zbl0404.35001MR503330
- [14] A. Bensoussan, J.L. Lions and G. Papanicolaou, Boundary layers and homogenization of transport processes. Publ. Res. Inst. Math. Sci. 15 ( 1979) 53-157. Zbl0408.60100MR533346
- [15] A. Bourgeat and E. Marusic-Paloka, Non-linear effects for flow in periodically constricted channel caused by high injection rate. Mathematical Models and Methods in Applied Sciences 8 ( 1998) 379-405. Zbl0920.76082MR1624867
- [16] R. Brizzi and J.P. Chalot, Homogénéisation de frontière. PhD Thesis, Université de Nice ( 1978.
- [17] G. Buttazzo and R.V. Kohn, Reinforcement by a thin layer with oscillating thickness. Appl. Math. Optim. 16 ( 1987) 247-261. MR901816
- [18] G. Chechkin, A. Friedman and A. Piatnitski, The boundary-value problem in domains with very rapidly oscillating boundary. INRIA Report 3062 ( 1996). Zbl0938.35049
- [19] R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique, Tome 3, Masson, Paris ( 1984). Zbl0642.35001MR792484
- [20] B. Engquist and J.C. Nédélec, Effective boundary conditions for accoustic and electro-magnetic scaterring in thin layers. Internal report 278, CMAP Ecole Polytechnique ( 1993).
- [21] A. Friedman, B. Hu and Y. Liu, A boundary value problem for the Poisson equation with multi-scale oscillating boundary. J. Diff. Eq. 137 ( 1997) 54-93. Zbl0878.35014MR1451536
- [22] W. Jäger and A. Mikelic, On the boundary conditions at the contact interface between a porous medium and a free fluid. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 23 ( 1996) 403-465. Zbl0878.76076MR1440029
- [23] E. Landis and G. Panasenko, A theorem on the asymptotics of solutions of elliptic equations with coefficients periodic in all variables except one. Soviet Math. Dokl. 18 ( 1977) 1140-1143. Zbl0378.35020
- [24] J.L. Lions, Some methods in the mathematical analysis of systems and their controls. Science Press, Beijing, Gordon and Breach, New York ( 1981). Zbl0542.93034MR664760
- [25] S. Moskow and M. Vogelius, First order corrections to the homogenized eigenvalues of a periodic composite medium. A convergence proof. Proc. Roy. Soc. Edinburg 127 ( 1997) 1263-1295. Zbl0888.35011MR1489436
- [26] O. Oleinik, A. Shamaev and G. Yosifian, Mathematical problems in elasticity and homogenization. North Holland, Amsterdam ( 1992). Zbl0768.73003MR1195131
- [27] E. Sánchez-Palencia, Non homogeneous media and vibration theory. Springer Verlag, Lecture notes in physics 127 ( 1980). Zbl0432.70002MR578345
- [28] F. Santosa and W. Symes, A dispersive effective medium for wave propagation in periodic composites. SIAM J. Appl. Math. 51 ( 1991) 984-1005. Zbl0741.73017MR1117428
- [29] F. Santosa and M. Vogelius, First-order corrections to the homogenized eigenvalues of a periodic composite medium. SIAM J. Appl. Math. 53 ( 1993) 1636-1668. Zbl0808.35085MR1247172
Citations in EuDML Documents
top- Antoine Gloria, Stefan Neukamm, Felix Otto, An optimal quantitative two-scale expansion in stochastic homogenization of discrete elliptic equations
- Maria Neuss-Radu, The boundary behavior of a composite material
- Claude Le Bris, Frédéric Legoll, Florian Thomines, Multiscale Finite Element approach for “weakly” random problems and related issues
- Maria Neuss-Radu, The boundary behavior of a composite material
- Dominique Blanchard, Antonio Gaudiello, Homogenization of highly oscillating boundaries and reduction of dimension for a monotone problem
- Dominique Blanchard, Antonio Gaudiello, Homogenization of highly oscillating boundaries and reduction of dimension for a monotone problem
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.