Boundary layer tails in periodic homogenization

Grégoire Allaire; Micol Amar

ESAIM: Control, Optimisation and Calculus of Variations (1999)

  • Volume: 4, page 209-243
  • ISSN: 1292-8119

How to cite

top

Allaire, Grégoire, and Amar, Micol. "Boundary layer tails in periodic homogenization." ESAIM: Control, Optimisation and Calculus of Variations 4 (1999): 209-243. <http://eudml.org/doc/90541>.

@article{Allaire1999,
author = {Allaire, Grégoire, Amar, Micol},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {rectangular domains having either fixed or oscillating boundary; asymptotic expansion; homogenized equation; effective Fourier boundary conditions},
language = {eng},
pages = {209-243},
publisher = {EDP Sciences},
title = {Boundary layer tails in periodic homogenization},
url = {http://eudml.org/doc/90541},
volume = {4},
year = {1999},
}

TY - JOUR
AU - Allaire, Grégoire
AU - Amar, Micol
TI - Boundary layer tails in periodic homogenization
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1999
PB - EDP Sciences
VL - 4
SP - 209
EP - 243
LA - eng
KW - rectangular domains having either fixed or oscillating boundary; asymptotic expansion; homogenized equation; effective Fourier boundary conditions
UR - http://eudml.org/doc/90541
ER -

References

top
  1. [1] T. Abboud and H. Ammari, Diffraction at a curved grating, TM and TE cases, homogenization. J. Math. Anal. Appl. 202 ( 1996) 995-1206. Zbl0865.35122MR1408364
  2. [2] Y. Achdou, Effect d'un revêtement métallisé mince sur la réflexion d'une onde électromagnétique. C.R. Acad. Sci. Paris Sér. I Math. 314 ( 1992) 217-222. Zbl0800.78017MR1150836
  3. [3] Y. Achdou and O. Pironneau, Domain decomposition and wall laws. C.R. Acad. Sci. Paris Sér. I Math. 320 ( 1995) 541-547. Zbl0834.76014MR1322334
  4. [4] Y. Achdou and O. Pironneau, A 2nd order condition for flow over rough walls, in Proc. Int. Conf. on Nonlinear Diff. Eqs. and Appl., Bangalore, Shrikant Ed. ( 1996). 
  5. [5] G. Allaire and G. Bal, Homogenization of the criticality spectral equation in neutron transport. M2AN to appear. Zbl0931.35010MR1726482
  6. [6] G. Allaire and C. Conca, Bloch wave homogenization and spectral asymptotic analysis. J. Math. Pures et Appl. 77 ( 1998) 153-208. Zbl0901.35005MR1614641
  7. [7] G. Allaire and C. Conca, Boundary layers in the homogenization of a spectral problem in fluid-solid structures. SIAM J. Math. Anal. 29 ( 1998) 343-379. Zbl0918.35018MR1616495
  8. [8] M. Avellaneda and F.-H. Lin, Homogenization of elliptic problems with Lp boundary data. Appl. Math. Optim. 15 ( 1987) 93-107. Zbl0644.35034MR868901
  9. [9] M. Avellaneda and F.-H. Lin, Compactness methods in the theory of homogenization. C.P.A.M., XL ( 1987) 803-847. Zbl0632.35018MR910954
  10. [10] I. Babu_ka, Solution of interface problems by homogenization I, II, III. SIAM J. Math. Anal. 7 ( 1976) 603-634 and 635-645; 8 ( 1977) 923-937. Zbl0343.35023MR509282
  11. [11] N. Bakhvalov and G. Panasenko, Homogenization, averaging processes in periodic media. Kluwer Academic Publishers, Dordrecht, Mathematics and its Applications 36 ( 1990). Zbl0692.73012MR1112788
  12. [12] G. Bal, First-order corrector for the homogenization of the criticality eigenvalue problem in the even parity formulation of the neutron transport, to appear. Zbl0937.35007MR1718300
  13. [13] A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures. North Holland, Amsterdam ( 1978). Zbl0404.35001MR503330
  14. [14] A. Bensoussan, J.L. Lions and G. Papanicolaou, Boundary layers and homogenization of transport processes. Publ. Res. Inst. Math. Sci. 15 ( 1979) 53-157. Zbl0408.60100MR533346
  15. [15] A. Bourgeat and E. Marusic-Paloka, Non-linear effects for flow in periodically constricted channel caused by high injection rate. Mathematical Models and Methods in Applied Sciences 8 ( 1998) 379-405. Zbl0920.76082MR1624867
  16. [16] R. Brizzi and J.P. Chalot, Homogénéisation de frontière. PhD Thesis, Université de Nice ( 1978. 
  17. [17] G. Buttazzo and R.V. Kohn, Reinforcement by a thin layer with oscillating thickness. Appl. Math. Optim. 16 ( 1987) 247-261. MR901816
  18. [18] G. Chechkin, A. Friedman and A. Piatnitski, The boundary-value problem in domains with very rapidly oscillating boundary. INRIA Report 3062 ( 1996). Zbl0938.35049
  19. [19] R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique, Tome 3, Masson, Paris ( 1984). Zbl0642.35001MR792484
  20. [20] B. Engquist and J.C. Nédélec, Effective boundary conditions for accoustic and electro-magnetic scaterring in thin layers. Internal report 278, CMAP Ecole Polytechnique ( 1993). 
  21. [21] A. Friedman, B. Hu and Y. Liu, A boundary value problem for the Poisson equation with multi-scale oscillating boundary. J. Diff. Eq. 137 ( 1997) 54-93. Zbl0878.35014MR1451536
  22. [22] W. Jäger and A. Mikelic, On the boundary conditions at the contact interface between a porous medium and a free fluid. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 23 ( 1996) 403-465. Zbl0878.76076MR1440029
  23. [23] E. Landis and G. Panasenko, A theorem on the asymptotics of solutions of elliptic equations with coefficients periodic in all variables except one. Soviet Math. Dokl. 18 ( 1977) 1140-1143. Zbl0378.35020
  24. [24] J.L. Lions, Some methods in the mathematical analysis of systems and their controls. Science Press, Beijing, Gordon and Breach, New York ( 1981). Zbl0542.93034MR664760
  25. [25] S. Moskow and M. Vogelius, First order corrections to the homogenized eigenvalues of a periodic composite medium. A convergence proof. Proc. Roy. Soc. Edinburg 127 ( 1997) 1263-1295. Zbl0888.35011MR1489436
  26. [26] O. Oleinik, A. Shamaev and G. Yosifian, Mathematical problems in elasticity and homogenization. North Holland, Amsterdam ( 1992). Zbl0768.73003MR1195131
  27. [27] E. Sánchez-Palencia, Non homogeneous media and vibration theory. Springer Verlag, Lecture notes in physics 127 ( 1980). Zbl0432.70002MR578345
  28. [28] F. Santosa and W. Symes, A dispersive effective medium for wave propagation in periodic composites. SIAM J. Appl. Math. 51 ( 1991) 984-1005. Zbl0741.73017MR1117428
  29. [29] F. Santosa and M. Vogelius, First-order corrections to the homogenized eigenvalues of a periodic composite medium. SIAM J. Appl. Math. 53 ( 1993) 1636-1668. Zbl0808.35085MR1247172

Citations in EuDML Documents

top
  1. Antoine Gloria, Stefan Neukamm, Felix Otto, An optimal quantitative two-scale expansion in stochastic homogenization of discrete elliptic equations
  2. Maria Neuss-Radu, The boundary behavior of a composite material
  3. Claude Le Bris, Frédéric Legoll, Florian Thomines, Multiscale Finite Element approach for “weakly” random problems and related issues
  4. Maria Neuss-Radu, The boundary behavior of a composite material
  5. Dominique Blanchard, Antonio Gaudiello, Homogenization of highly oscillating boundaries and reduction of dimension for a monotone problem
  6. Dominique Blanchard, Antonio Gaudiello, Homogenization of highly oscillating boundaries and reduction of dimension for a monotone problem

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.