Two-grid finite-element schemes for the transient Navier-Stokes problem

Vivette Girault; Jacques-Louis Lions

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2001)

  • Volume: 35, Issue: 5, page 945-980
  • ISSN: 0764-583X

Abstract

top
We semi-discretize in space a time-dependent Navier-Stokes system on a three-dimensional polyhedron by finite-elements schemes defined on two grids. In the first step, the fully non-linear problem is semi-discretized on a coarse grid, with mesh-size H . In the second step, the problem is linearized by substituting into the non-linear term, the velocity 𝐮 H computed at step one, and the linearized problem is semi-discretized on a fine grid with mesh-size h . This approach is motivated by the fact that, on a convex polyhedron and under adequate assumptions on the data, the contribution of 𝐮 H to the error analysis is measured in the L 2 norm in space and time, and thus, for the lowest-degree elements, is of the order of H 2 . Hence, an error of the order of h can be recovered at the second step, provided h = H 2 .

How to cite

top

Girault, Vivette, and Lions, Jacques-Louis. "Two-grid finite-element schemes for the transient Navier-Stokes problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 35.5 (2001): 945-980. <http://eudml.org/doc/194083>.

@article{Girault2001,
abstract = {We semi-discretize in space a time-dependent Navier-Stokes system on a three-dimensional polyhedron by finite-elements schemes defined on two grids. In the first step, the fully non-linear problem is semi-discretized on a coarse grid, with mesh-size $H$. In the second step, the problem is linearized by substituting into the non-linear term, the velocity $\{\mathbf \{u\}\}_H$ computed at step one, and the linearized problem is semi-discretized on a fine grid with mesh-size $h$. This approach is motivated by the fact that, on a convex polyhedron and under adequate assumptions on the data, the contribution of $\{\mathbf \{u\}\}_H$ to the error analysis is measured in the $L^2$ norm in space and time, and thus, for the lowest-degree elements, is of the order of $H^2$. Hence, an error of the order of $h$ can be recovered at the second step, provided $h = H^2$.},
author = {Girault, Vivette, Lions, Jacques-Louis},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {two grids; a priori estimates; duality; three-dimensional polyhedron; coarse grid; linearized problem; fine grid; error analysis; lowest-degree elements},
language = {eng},
number = {5},
pages = {945-980},
publisher = {EDP-Sciences},
title = {Two-grid finite-element schemes for the transient Navier-Stokes problem},
url = {http://eudml.org/doc/194083},
volume = {35},
year = {2001},
}

TY - JOUR
AU - Girault, Vivette
AU - Lions, Jacques-Louis
TI - Two-grid finite-element schemes for the transient Navier-Stokes problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2001
PB - EDP-Sciences
VL - 35
IS - 5
SP - 945
EP - 980
AB - We semi-discretize in space a time-dependent Navier-Stokes system on a three-dimensional polyhedron by finite-elements schemes defined on two grids. In the first step, the fully non-linear problem is semi-discretized on a coarse grid, with mesh-size $H$. In the second step, the problem is linearized by substituting into the non-linear term, the velocity ${\mathbf {u}}_H$ computed at step one, and the linearized problem is semi-discretized on a fine grid with mesh-size $h$. This approach is motivated by the fact that, on a convex polyhedron and under adequate assumptions on the data, the contribution of ${\mathbf {u}}_H$ to the error analysis is measured in the $L^2$ norm in space and time, and thus, for the lowest-degree elements, is of the order of $H^2$. Hence, an error of the order of $h$ can be recovered at the second step, provided $h = H^2$.
LA - eng
KW - two grids; a priori estimates; duality; three-dimensional polyhedron; coarse grid; linearized problem; fine grid; error analysis; lowest-degree elements
UR - http://eudml.org/doc/194083
ER -

References

top
  1. [1] R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). Zbl0314.46030MR450957
  2. [2] A. Ait Ou Amni and M. Marion, Nonlinear Galerkin methods and mixed finite elements: two-grid algorithms for the Navier-Stokes equations. Numer. Math. 62 (1994) 189–213. Zbl0811.76035
  3. [3] D. Arnold, F. Brezzi and M. Fortin, A stable finite element for the Stokes equations. Calcolo 21 (1984) 337–344. Zbl0593.76039
  4. [4] I. Babuška, The finite element method with Lagrange multipliers. Numer. Math. 20 (1973) 179–192. Zbl0258.65108
  5. [5] S. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, in Texts in Applied Mathematics 15, Springer-Verlag, New York (1994). Zbl0804.65101MR1278258
  6. [6] F. Brezzi, On the existence, uniqueness and approximation of saddle-points problems arising from Lagrange multipliers. RAIRO Anal. Numér. (1974) 129–151. Zbl0338.90047
  7. [7] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). Zbl0788.73002MR1115205
  8. [8] A.J. Chorin, Numerical solution of the Navier-Stokes equations. Math. Comput. 22 (1968) 745–762. Zbl0198.50103
  9. [9] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978). Zbl0383.65058MR520174
  10. [10] E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations. McGraw-Hill, New York (1955). Zbl0064.33002MR69338
  11. [11] M. Crouzeix, Étude d’une méthode de linéarisation. Résolution numérique des équations de Stokes stationnaires. Application aux équations de Navier-Stokes stationnaires, in Approximation et méthodes itératives de résolution d’inéquations variationnelles et de problèmes non linéaires, in IRIA, Cahier 12, Le Chesnay (1974) 139–244. 
  12. [12] M. Dauge, Stationary Stokes and Navier-Stokes systems on two or three-dimensional domains with corners. SIAM J. Math. Anal. 20 (1989) 74–97. Zbl0681.35071
  13. [13] T. Dupont and L.R. Scott, Polynomial approximation of functions in Sobolev spaces. Math. Comp. 34 (1980) 441–463. Zbl0423.65009
  14. [14] C. Foias, O. Manley and R. Temam, Modelization of the interaction of small and large eddies in two dimensional turbulent flows. RAIRO Modél. Anal. Numér. 22 (1988) 93–114. Zbl0663.76054
  15. [15] B. Garcia-Archilla and E. Titi, Postprocessing the Galerkin method: the finite-element case. SIAM J. Numer. Anal. 37 (2000) 470–499. Zbl0952.65078
  16. [16] V. Girault and J.-L. Lions, Two-grid finite-element schemes for the steady Navier-Stokes problem in polyhedra. Portugal. Math. 58 (2001) 25–57. Zbl0997.76043
  17. [17] V. Girault and P.-A. Raviart, Finite Element Methods for the Navier-Stokes Equations, in Lecture Notes in Mathematics 749, Springer-Verlag, Berlin, Heidelberg, New York (1979). Zbl0413.65081MR548867
  18. [18] V. Girault and P.A. Raviart, Finite Element Methods for the Navier-Stokes Equations. Theory and Algorithms, in Springer Series in Computational Mathematics 5, Springer-Verlag, Berlin, Heidelberg, New York (1986). Zbl0585.65077MR851383
  19. [19] R. Glowinski, Finite element methods for the numerical simulation of unsteady incompressible viscous flow modeled by the Navier-Stokes equations. To appear in Handbook of Numerical Analysis, P.G. Ciarlet and J.-L. Lions, Eds., Elsevier, Amsterdam. 
  20. [20] P. Grisvard, Elliptic Problems in Nonsmooth Domains, in Pitman Monographs and Studies in Mathematics 24, Pitman, Boston (1985). Zbl0695.35060MR775683
  21. [21] J. Heywood, The Navier-Stokes equations: on the existence, regularity and decay of solutions. Indiana Univ. Math. J. 29 (1980) 639–681. Zbl0494.35077
  22. [22] J. Heywood and R. Rannacher, Finite element approximation of the nonstationnary Navier-Stokes problem. Regularity of solutions and second order error estimates for spatial discretization. SIAM J. Numer. Anal. 19 (1982) 275–311. Zbl0487.76035
  23. [23] O.A. Ladyzenskaya, The Mathematical Theory of Viscous Incompressible Flow. In Russian (1961). First English translation, Gordon & Breach, Eds., New York (1963). Zbl0121.42701MR155093
  24. [24] W. Layton, A two-level discretization method for the Navier-Stokes equations. Comput. Math. Appl. 26 (1993) 33–38. Zbl0773.76042
  25. [25] W. Layton and W. Lenferink, Two-level Picard-defect corrections for the Navier-Stokes equations at high Reynolds number. Appl. Math. Comput. 69 (1995) 263–274. Zbl0828.76017
  26. [26] W. Layton and W. Lenferink, A Multilevel mesh independence principle for the Navier-Stokes equations. SIAM J. Numer. Anal. 33 (1996) 17–30. Zbl0844.76053
  27. [27] J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique. J. Math. Pures Appl. 12 (1933) 1–82. Zbl0006.16702
  28. [28] J. Leray, Essai sur des mouvements plans d’un liquide visqueux que limitent des parois. J. Math. Pures Appl. 13 (1934) 331–418. Zbl60.0727.01JFM60.0727.01
  29. [29] J. Leray, Essai sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63 (1934) 193–248. JFM60.0726.05
  30. [30] J.-L. Lions, Équations différentielles opérationnelles 111. Springer-Verlag, Berlin, Heidelberg, New York (1961). Zbl0098.31101MR153974
  31. [31] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). Zbl0189.40603MR259693
  32. [32] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications I. Dunod, Paris (1968). Zbl0165.10801
  33. [33] P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1: Incompressible Fluids. Oxford University Press, Oxford (1996). Zbl0866.76002MR1422251
  34. [34] P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 2: Compressible Fluids. Oxford University Press, Oxford (1998). Zbl0908.76004MR1637634
  35. [35] P.-L. Lions, On some challenging problems in nonlinear partial differential equations, in Mathematics: Frontiers and Perspectives; Amer. Math. Soc., Providence, RI (2000) 121–135. Zbl0972.35094
  36. [36] M. Marion and R. Temam, Nonlinear Galerkin methods. SIAM J. Numer. Anal. 26 (1989) 1139–1157. Zbl0683.65083
  37. [37] M. Marion and R. Temam, Nonlinear Galerkin methods: the finite element case. Numer. Math. 57 (1990) 1–22. Zbl0702.65081
  38. [38] M. Marion and R. Temam, Navier-Stokes equations: theory and approximation, in Handbook of Numerical Analysis. Vol. VI, P.G. Ciarlet and J.-L. Lions, Eds., Elsevier, Amsterdam (1998) 503–688. Zbl0921.76040
  39. [39] J. Nečas, Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967). MR227584
  40. [40] A. Niemistö, FE-approximation of unconstrained optimal control like problems. Report No. 70. University of Jyväskylä (1995). Zbl0835.65086
  41. [41] O. Pironneau, Finite Element Methods for Fluids. Wiley, Chichester (1989). Zbl0712.76001MR1030279
  42. [42] L.R. Scott and S. Zhang, Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483–493. Zbl0696.65007
  43. [43] R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis. North-Holland, Amsterdam (1979). Zbl0426.35003MR603444
  44. [44] R. Temam, Une méthode d’approximation de la solution des équations de Navier-Stokes. Bull. Soc. Math. France 98 (1968) 115–152. Zbl0181.18903
  45. [45] J. Xu, A novel two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput. 15 (1994) 231–237. Zbl0795.65077
  46. [46] J. Xu, Two-grid finite element discretization techniques for linear and nonlinear PDE. SIAM J. Numer. Anal. 33 (1996) 1759–1777. Zbl0860.65119

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.