A modal synthesis method for the elastoacoustic vibration problem

Alfredo Bermúdez; Luis Hervella-Nieto; Rodolfo Rodríguez

ESAIM: Mathematical Modelling and Numerical Analysis (2010)

  • Volume: 36, Issue: 1, page 121-142
  • ISSN: 0764-583X

Abstract

top
A modal synthesis method to solve the elastoacoustic vibration problem is analyzed. A two-dimensional coupled fluid-solid system is considered; the solid is described by displacement variables, whereas displacement potential is used for the fluid. A particular modal synthesis leading to a symmetric eigenvalue problem is introduced. Finite element discretizations with Lagrangian elements are considered for solving the uncoupled problems. Convergence for eigenvalues and eigenfunctions is proved, error estimates are given, and numerical experiments exhibiting the good performance of the method are reported.

How to cite

top

Bermúdez, Alfredo, Hervella-Nieto, Luis, and Rodríguez, Rodolfo. "A modal synthesis method for the elastoacoustic vibration problem." ESAIM: Mathematical Modelling and Numerical Analysis 36.1 (2010): 121-142. <http://eudml.org/doc/194092>.

@article{Bermúdez2010,
abstract = { A modal synthesis method to solve the elastoacoustic vibration problem is analyzed. A two-dimensional coupled fluid-solid system is considered; the solid is described by displacement variables, whereas displacement potential is used for the fluid. A particular modal synthesis leading to a symmetric eigenvalue problem is introduced. Finite element discretizations with Lagrangian elements are considered for solving the uncoupled problems. Convergence for eigenvalues and eigenfunctions is proved, error estimates are given, and numerical experiments exhibiting the good performance of the method are reported. },
author = {Bermúdez, Alfredo, Hervella-Nieto, Luis, Rodríguez, Rodolfo},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Fluid-structure interaction; elastoacoustic; modal synthesis.; displacement potential; eigenvalue problem; Lagrangian elements},
language = {eng},
month = {3},
number = {1},
pages = {121-142},
publisher = {EDP Sciences},
title = {A modal synthesis method for the elastoacoustic vibration problem},
url = {http://eudml.org/doc/194092},
volume = {36},
year = {2010},
}

TY - JOUR
AU - Bermúdez, Alfredo
AU - Hervella-Nieto, Luis
AU - Rodríguez, Rodolfo
TI - A modal synthesis method for the elastoacoustic vibration problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 36
IS - 1
SP - 121
EP - 142
AB - A modal synthesis method to solve the elastoacoustic vibration problem is analyzed. A two-dimensional coupled fluid-solid system is considered; the solid is described by displacement variables, whereas displacement potential is used for the fluid. A particular modal synthesis leading to a symmetric eigenvalue problem is introduced. Finite element discretizations with Lagrangian elements are considered for solving the uncoupled problems. Convergence for eigenvalues and eigenfunctions is proved, error estimates are given, and numerical experiments exhibiting the good performance of the method are reported.
LA - eng
KW - Fluid-structure interaction; elastoacoustic; modal synthesis.; displacement potential; eigenvalue problem; Lagrangian elements
UR - http://eudml.org/doc/194092
ER -

References

top
  1. I. Babuska and J. Osborn, Eigenvalue problems. In Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet and J.L. Lions, Eds., North Holland, Amsterdam (1991).  Zbl0875.65087
  2. A. Bermúdez, P. Gamallo, L. Hervella-Nieto and R. Rodríguez, Finite element analysis of the elastoacoustic problem using the pressure in the fluid. Preprint DIM 2001-05, Universidad de Concepción, Concepción, Chile (submitted).  Zbl1036.74044
  3. F. Bourquin, Analysis and comparison of several component mode synthesis methods on one-dimensional domains. Numer. Math.58 (1990) 11-34.  Zbl0686.34026
  4. F. Bourquin, Component mode synthesis and eigenvales of second order operators: Discretization and algorithm. RAIRO Modél. Math. Anal. Numér.26 (1992) 385-423.  Zbl0765.65100
  5. F. Bourquin, A pure displacement dynamic substructuring method with accurate pressure for elastoacoustics. Laboratoire Central des Ponts et Chaussées, R/94/05/7 (1994).  
  6. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978).  Zbl0383.65058
  7. R. Craig and M.C.C. Bampton, Coupling of substructures for dynamic analysis. AIAA J.6 (1968) 1313-1321.  Zbl0159.56202
  8. R.L. Goldman, Vibration analysis of dynamic analysis. AIAA J.7 (1969) 1152-1154.  Zbl0179.55102
  9. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985).  Zbl0695.35060
  10. P. Grisvard, Caractérisation de quelques espaces d'interpolation. Arch. Rat. Mech. Anal.25 (1967) 40-63.  Zbl0187.05901
  11. L. Hervella-Nieto, Métodos de elementos finitos y reducción modal para problemas de interacción fluido-estructura. Ph.D. thesis, Publicaciones del Departamento de Matemática Aplicada, 27, Universidad de Santiago de Compostela (2000).  
  12. W.C. Hurty, Dynamic analysis of structural systems using component modes. AIAA J.4 (1965) 678-685.  
  13. W.G. Kolata, Approximation in variationally posed eigenvalues problems. Numer. Math.29 (1978) 159-171.  Zbl0352.65059
  14. J.L. Lions, Théorèmes de trace et d'interpolation (I). Ann. Scuola Norm. Sup. Pisa13 (1959) 389-403.  Zbl0097.09502
  15. H.J.-P. Morand and R. Ohayon, Interactions Fluides-Structure. Masson, Paris (1996).  Zbl0402.73052
  16. H.J.-P. Morand and R. Ohayon, Substructure variational analysis of the vibration of coupled fluid-structure systems. Finite element results. Internat. J. Numer. Methods Engrg.14 (1979) 741-755.  Zbl0402.73052
  17. J. Necas, Les Méthodes Directes en Théorie des Équations Elliptiques. Masson, Paris (1967).  
  18. G. Sandberg, A new strategy for solving fluid-structure problems. Internat. J. Numer. Methods Engrg.38 (1995) 357-370.  Zbl0820.73072
  19. J. Wandinger, Analysis of small vibrations of coupled fluid-structure systems. Z. Angew. Math. Mech.74 (1994) 37-42.  Zbl0803.73026
  20. J.-L. Zolesio, Interpolation d'espaces de Sobolev avec conditions aux limites de type mêlé. C. R. Acad. Sci. Paris Série A285 (1982) 621-624.  Zbl0376.46018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.