Numerical analysis of nonlinear elliptic-parabolic equations

Emmanuel Maitre

ESAIM: Mathematical Modelling and Numerical Analysis (2010)

  • Volume: 36, Issue: 1, page 143-153
  • ISSN: 0764-583X

Abstract

top
This paper deals with the numerical approximation of mild solutions of elliptic-parabolic equations, relying on the existence results of Bénilan and Wittbold (1996). We introduce a new and simple algorithm based on Halpern's iteration for nonexpansive operators (Bauschke, 1996; Halpern, 1967; Lions, 1977), which is shown to be convergent in the degenerate case, and compare it with existing schemes (Jäger and Kačur, 1995; Kačur, 1999).

How to cite

top

Maitre, Emmanuel. "Numerical analysis of nonlinear elliptic-parabolic equations." ESAIM: Mathematical Modelling and Numerical Analysis 36.1 (2010): 143-153. <http://eudml.org/doc/194093>.

@article{Maitre2010,
abstract = { This paper deals with the numerical approximation of mild solutions of elliptic-parabolic equations, relying on the existence results of Bénilan and Wittbold (1996). We introduce a new and simple algorithm based on Halpern's iteration for nonexpansive operators (Bauschke, 1996; Halpern, 1967; Lions, 1977), which is shown to be convergent in the degenerate case, and compare it with existing schemes (Jäger and Kačur, 1995; Kačur, 1999). },
author = {Maitre, Emmanuel},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Elliptic-parabolic; numerical; iterative method.; elliptic-parabolic equation; mild solution; iterative method; convergence; numerical results},
language = {eng},
month = {3},
number = {1},
pages = {143-153},
publisher = {EDP Sciences},
title = {Numerical analysis of nonlinear elliptic-parabolic equations},
url = {http://eudml.org/doc/194093},
volume = {36},
year = {2010},
}

TY - JOUR
AU - Maitre, Emmanuel
TI - Numerical analysis of nonlinear elliptic-parabolic equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 36
IS - 1
SP - 143
EP - 153
AB - This paper deals with the numerical approximation of mild solutions of elliptic-parabolic equations, relying on the existence results of Bénilan and Wittbold (1996). We introduce a new and simple algorithm based on Halpern's iteration for nonexpansive operators (Bauschke, 1996; Halpern, 1967; Lions, 1977), which is shown to be convergent in the degenerate case, and compare it with existing schemes (Jäger and Kačur, 1995; Kačur, 1999).
LA - eng
KW - Elliptic-parabolic; numerical; iterative method.; elliptic-parabolic equation; mild solution; iterative method; convergence; numerical results
UR - http://eudml.org/doc/194093
ER -

References

top
  1. H.W. Alt and S. Luckhaus, Quasilinear Elliptic-Parabolic Differential Equations. Math. Z.183 (1983) 311-341.  Zbl0497.35049
  2. H. Bauschke, The approximation of fixed points of composition of nonexpansive mappings in Hilbert space. J. Math. Anal. Appl.202 (1996) 150-159.  Zbl0956.47024
  3. Ph. Bénilan and K. Ha, Equation d'évolution du type ( d u / d t ) + β ϕ ( u ) 0 dans L∞(Ω). C.R. Acad. Sci. Paris Sér. A281 (1975) 947-950.  Zbl0315.35078
  4. A. Berger, H. Brézis and J. Rogers, A numerical method for solving the problem u t - Δ f ( u ) = 0 . RAIRO Anal. Numér.13 (1979) 297-312.  Zbl0426.65052
  5. Ph. Bénilan and P. Wittbold, On mild and weak solutions of elliptic-parabolic problems. Adv. Differential Equations1 (1996) 1053-1073.  Zbl0858.35064
  6. Ph. Bénilan and P. Wittbold, Sur un problème parabolique-elliptique. ESAIM: M2AN33 (1999) 121-127 .  
  7. P. Colli, On Some Doubly Nonlinear Evolution Equations in Banach Spaces. Technical Report 775, Università di Pavia, Istituto di Analisi Numerica (1991).  Zbl0757.34051
  8. P. Colli and A. Visintin, On a class of doubly nonlinear evolution equations. Comm. Partial Differential Equations15 (1990) 737-756.  Zbl0707.34053
  9. B. Halpern, Fixed points of nonexpansive mappings. Bull. Amer. Math. Soc.73 (1967) 957-961.  Zbl0177.19101
  10. W. Jäger and J. Kacur, Solution of Porous Medium Type Systems by Linear Approximation Schemes. Numer. Math.60 (1991) 407-427.  Zbl0744.65060
  11. W. Jäger and J. Kacur, Solution of Doubly Nonlinear and Degenerate Parabolic Problems by Relaxation Schemes. RAIRO Modél. Math. Anal. Numér.29 (1995) 605-627.  Zbl0837.65103
  12. J. Kacur, Solution of Some Free Boundary Problems by Relaxation Schemes. SIAM J. Numer. Anal.36 (1999) 290-316.  Zbl0924.65090
  13. J. Kacur, A. Handlovicová and M. Kacurová, Solution of Nonlinear Diffusion Problems by Linear Approximation Schemes. SIAM J. Numer. Anal.30 (1993) 1703-1722.  Zbl0792.65070
  14. J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod (1969).  Zbl0189.40603
  15. P.-L. Lions, Approximation de points fixes de contractions. C.R. Acad. Sci. Paris Sér. A.284 (1977) 1357-1359.  Zbl0349.47046
  16. E. Magenes, R.H. Nochetto and C. Verdi, Energy Error Estimates for a Linear Scheme to Approximate Nonlinear Parabolic Problems. RAIRO Modél. Math. Anal. Numér.21 (1987) 655-678.  Zbl0635.65123
  17. E. Maitre, Sur une classe d'équations à double non linéarité : application à la simulation numérique d'un écoulement visqueux compressible. Thèse, Université Grenoble I (1997).  
  18. E. Maitre and P. Witomski, A pseudomonotonicity adapted to doubly nonlinear elliptic-parabolic equations. Nonlinear Anal. TMA (to appear).  Zbl1001.35091
  19. F. Otto, L1-Contraction and Uniqueness for Quasilinear Elliptic-Parabolic Equations. J. Differential Equations131 (1996) 20-38.  Zbl0862.35078
  20. F. Simondon, Sur l'équation b ( u ) t - a ( u , u ) = 0 par la méthode des semi-groupes dans L1. Séminaire d'analyse non linéaire, Laboratoire de Mathématiques de Besançon (1984).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.