Numerical analysis of nonlinear elliptic-parabolic equations
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 36, Issue: 1, page 143-153
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topMaitre, Emmanuel. "Numerical analysis of nonlinear elliptic-parabolic equations." ESAIM: Mathematical Modelling and Numerical Analysis 36.1 (2010): 143-153. <http://eudml.org/doc/194093>.
@article{Maitre2010,
abstract = {
This paper deals with the numerical approximation of mild solutions of elliptic-parabolic equations, relying on the existence results of Bénilan and Wittbold (1996).
We introduce a new and simple algorithm based on Halpern's iteration for nonexpansive operators
(Bauschke, 1996; Halpern, 1967; Lions, 1977), which is shown to be convergent in the degenerate case, and compare it with existing schemes (Jäger and Kačur, 1995; Kačur, 1999).
},
author = {Maitre, Emmanuel},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Elliptic-parabolic; numerical; iterative method.; elliptic-parabolic equation; mild solution; iterative method; convergence; numerical results},
language = {eng},
month = {3},
number = {1},
pages = {143-153},
publisher = {EDP Sciences},
title = {Numerical analysis of nonlinear elliptic-parabolic equations},
url = {http://eudml.org/doc/194093},
volume = {36},
year = {2010},
}
TY - JOUR
AU - Maitre, Emmanuel
TI - Numerical analysis of nonlinear elliptic-parabolic equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 36
IS - 1
SP - 143
EP - 153
AB -
This paper deals with the numerical approximation of mild solutions of elliptic-parabolic equations, relying on the existence results of Bénilan and Wittbold (1996).
We introduce a new and simple algorithm based on Halpern's iteration for nonexpansive operators
(Bauschke, 1996; Halpern, 1967; Lions, 1977), which is shown to be convergent in the degenerate case, and compare it with existing schemes (Jäger and Kačur, 1995; Kačur, 1999).
LA - eng
KW - Elliptic-parabolic; numerical; iterative method.; elliptic-parabolic equation; mild solution; iterative method; convergence; numerical results
UR - http://eudml.org/doc/194093
ER -
References
top- H.W. Alt and S. Luckhaus, Quasilinear Elliptic-Parabolic Differential Equations. Math. Z.183 (1983) 311-341.
- H. Bauschke, The approximation of fixed points of composition of nonexpansive mappings in Hilbert space. J. Math. Anal. Appl.202 (1996) 150-159.
- Ph. Bénilan and K. Ha, Equation d'évolution du type dans L∞(Ω). C.R. Acad. Sci. Paris Sér. A281 (1975) 947-950.
- A. Berger, H. Brézis and J. Rogers, A numerical method for solving the problem . RAIRO Anal. Numér.13 (1979) 297-312.
- Ph. Bénilan and P. Wittbold, On mild and weak solutions of elliptic-parabolic problems. Adv. Differential Equations1 (1996) 1053-1073.
- Ph. Bénilan and P. Wittbold, Sur un problème parabolique-elliptique. ESAIM: M2AN33 (1999) 121-127 .
- P. Colli, On Some Doubly Nonlinear Evolution Equations in Banach Spaces. Technical Report 775, Università di Pavia, Istituto di Analisi Numerica (1991).
- P. Colli and A. Visintin, On a class of doubly nonlinear evolution equations. Comm. Partial Differential Equations15 (1990) 737-756.
- B. Halpern, Fixed points of nonexpansive mappings. Bull. Amer. Math. Soc.73 (1967) 957-961.
- W. Jäger and J. Kacur, Solution of Porous Medium Type Systems by Linear Approximation Schemes. Numer. Math.60 (1991) 407-427.
- W. Jäger and J. Kacur, Solution of Doubly Nonlinear and Degenerate Parabolic Problems by Relaxation Schemes. RAIRO Modél. Math. Anal. Numér.29 (1995) 605-627.
- J. Kacur, Solution of Some Free Boundary Problems by Relaxation Schemes. SIAM J. Numer. Anal.36 (1999) 290-316.
- J. Kacur, A. Handlovicová and M. Kacurová, Solution of Nonlinear Diffusion Problems by Linear Approximation Schemes. SIAM J. Numer. Anal.30 (1993) 1703-1722.
- J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod (1969).
- P.-L. Lions, Approximation de points fixes de contractions. C.R. Acad. Sci. Paris Sér. A.284 (1977) 1357-1359.
- E. Magenes, R.H. Nochetto and C. Verdi, Energy Error Estimates for a Linear Scheme to Approximate Nonlinear Parabolic Problems. RAIRO Modél. Math. Anal. Numér.21 (1987) 655-678.
- E. Maitre, Sur une classe d'équations à double non linéarité : application à la simulation numérique d'un écoulement visqueux compressible. Thèse, Université Grenoble I (1997).
- E. Maitre and P. Witomski, A pseudomonotonicity adapted to doubly nonlinear elliptic-parabolic equations. Nonlinear Anal. TMA (to appear).
- F. Otto, L1-Contraction and Uniqueness for Quasilinear Elliptic-Parabolic Equations. J. Differential Equations131 (1996) 20-38.
- F. Simondon, Sur l'équation par la méthode des semi-groupes dans L1. Séminaire d'analyse non linéaire, Laboratoire de Mathématiques de Besançon (1984).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.