An Optimum Design Problem in Magnetostatics
Antoine Henrot; Grégory Villemin
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 36, Issue: 2, page 223-239
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- S. Agmon, Lectures on Elliptic Boundary Value Problems. Van Nostrand Math Studies (1965).
- J. Baranger, Analyse Numérique. Hermann, Paris (1991).
- D. Chenais, On the existence of a solution in a domain identification problem. J. Math. Anal. Appl.52 (1975) 189-289.
- D. Chenais, Sur une famille de variétés à bord lipschitziennes, application à un problème d'identification de domaine. Ann. Inst. Fourier (Grenoble) 4 (1977) 201-231.
- R. Dautray and J.L. Lions (Eds.), Analyse mathématique et calcul numérique, Vol. I and II. Masson, Paris (1984).
- J.E. Dennis and R.B. Schnabel, Numerical Methods for unconstrained optimization. Prentice Hall (1983).
- E. Durand, Magnétostatique. Masson, Paris (1968).
- A. Henrot and M. Pierre, Optimisation de forme (to appear).
- M. Pierre and J.R. Roche, Computation of free sufaces in the electromagnetic shaping of liquid metals by optimization algorithms. Eur. J. Mech. B Fluids10 (1991) 489-500.
- M. Pierre and J.R. Roche, Numerical simulation of tridimensional electromagnetic shaping of liquid metals. Numer. Math.65 (1993) 203-217.
- O. Pironneau, Optimal shape design for elliptic systems. Springer Series in Computational Physics. Springer, New York (1984).
- J. Simon, Differentiation with respect to the domain in boundary value problems. Numer. Funct. Anal. Optim.2 (1980) 649-687.
- J. Simon, Variations with respect to domain for Neumann condition. Proceedings of the 1986 IFAC Congress at Pasadena ``Control of Distributed Parameter Systems".
- J. Sokolowski and J.P. Zolesio, Introduction to shape optimization: shape sensitity analysis. Springer Series in Computational Mathematics, Vol. 10, Springer, Berlin (1992).