An Optimum Design Problem in Magnetostatics
Antoine Henrot; Grégory Villemin
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 36, Issue: 2, page 223-239
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topHenrot, Antoine, and Villemin, Grégory. "An Optimum Design Problem in Magnetostatics." ESAIM: Mathematical Modelling and Numerical Analysis 36.2 (2010): 223-239. <http://eudml.org/doc/194102>.
@article{Henrot2010,
abstract = {
In this paper, we are interested in finding the optimal shape
of a magnet. The criterion to maximize is the jump of the
electromagnetic field between two different configurations.
We prove existence of an optimal shape into a natural class
of domains. We introduce a quasi-Newton type algorithm which
moves the boundary. This method is very efficient to improve
an initial shape. We give some numerical results.
},
author = {Henrot, Antoine, Villemin, Grégory},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Shape optimization; optimum design; magnet; numerical examples.; shape optimization; numerical examples},
language = {eng},
month = {3},
number = {2},
pages = {223-239},
publisher = {EDP Sciences},
title = {An Optimum Design Problem in Magnetostatics},
url = {http://eudml.org/doc/194102},
volume = {36},
year = {2010},
}
TY - JOUR
AU - Henrot, Antoine
AU - Villemin, Grégory
TI - An Optimum Design Problem in Magnetostatics
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 36
IS - 2
SP - 223
EP - 239
AB -
In this paper, we are interested in finding the optimal shape
of a magnet. The criterion to maximize is the jump of the
electromagnetic field between two different configurations.
We prove existence of an optimal shape into a natural class
of domains. We introduce a quasi-Newton type algorithm which
moves the boundary. This method is very efficient to improve
an initial shape. We give some numerical results.
LA - eng
KW - Shape optimization; optimum design; magnet; numerical examples.; shape optimization; numerical examples
UR - http://eudml.org/doc/194102
ER -
References
top- S. Agmon, Lectures on Elliptic Boundary Value Problems. Van Nostrand Math Studies (1965).
- J. Baranger, Analyse Numérique. Hermann, Paris (1991).
- D. Chenais, On the existence of a solution in a domain identification problem. J. Math. Anal. Appl.52 (1975) 189-289.
- D. Chenais, Sur une famille de variétés à bord lipschitziennes, application à un problème d'identification de domaine. Ann. Inst. Fourier (Grenoble) 4 (1977) 201-231.
- R. Dautray and J.L. Lions (Eds.), Analyse mathématique et calcul numérique, Vol. I and II. Masson, Paris (1984).
- J.E. Dennis and R.B. Schnabel, Numerical Methods for unconstrained optimization. Prentice Hall (1983).
- E. Durand, Magnétostatique. Masson, Paris (1968).
- A. Henrot and M. Pierre, Optimisation de forme (to appear).
- M. Pierre and J.R. Roche, Computation of free sufaces in the electromagnetic shaping of liquid metals by optimization algorithms. Eur. J. Mech. B Fluids10 (1991) 489-500.
- M. Pierre and J.R. Roche, Numerical simulation of tridimensional electromagnetic shaping of liquid metals. Numer. Math.65 (1993) 203-217.
- O. Pironneau, Optimal shape design for elliptic systems. Springer Series in Computational Physics. Springer, New York (1984).
- J. Simon, Differentiation with respect to the domain in boundary value problems. Numer. Funct. Anal. Optim.2 (1980) 649-687.
- J. Simon, Variations with respect to domain for Neumann condition. Proceedings of the 1986 IFAC Congress at Pasadena ``Control of Distributed Parameter Systems".
- J. Sokolowski and J.P. Zolesio, Introduction to shape optimization: shape sensitity analysis. Springer Series in Computational Mathematics, Vol. 10, Springer, Berlin (1992).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.