Singularities of eddy current problems
Martin Costabel; Monique Dauge; Serge Nicaise
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 37, Issue: 5, page 807-831
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topCostabel, Martin, Dauge, Monique, and Nicaise, Serge. "Singularities of eddy current problems." ESAIM: Mathematical Modelling and Numerical Analysis 37.5 (2010): 807-831. <http://eudml.org/doc/194192>.
@article{Costabel2010,
abstract = {
We consider the time-harmonic eddy current problem in its electric formulation
where the conductor is a polyhedral domain. By proving the convergence
in energy, we justify in what sense this problem is the limit of a family of Maxwell
transmission problems: Rather than a low frequency limit, this limit has to be understood
in the sense of Bossavit [11].
We describe the singularities of the solutions.
They are related to edge and corner singularities of certain problems for the scalar
Laplace operator, namely the interior Neumann problem, the exterior Dirichlet problem,
and possibly, an interface problem. These singularities are the limit of
the singularities of the related family of Maxwell problems.
},
author = {Costabel, Martin, Dauge, Monique, Nicaise, Serge},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Eddy current problem;
corner singularity; edge singularity.},
language = {eng},
month = {3},
number = {5},
pages = {807-831},
publisher = {EDP Sciences},
title = {Singularities of eddy current problems},
url = {http://eudml.org/doc/194192},
volume = {37},
year = {2010},
}
TY - JOUR
AU - Costabel, Martin
AU - Dauge, Monique
AU - Nicaise, Serge
TI - Singularities of eddy current problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 37
IS - 5
SP - 807
EP - 831
AB -
We consider the time-harmonic eddy current problem in its electric formulation
where the conductor is a polyhedral domain. By proving the convergence
in energy, we justify in what sense this problem is the limit of a family of Maxwell
transmission problems: Rather than a low frequency limit, this limit has to be understood
in the sense of Bossavit [11].
We describe the singularities of the solutions.
They are related to edge and corner singularities of certain problems for the scalar
Laplace operator, namely the interior Neumann problem, the exterior Dirichlet problem,
and possibly, an interface problem. These singularities are the limit of
the singularities of the related family of Maxwell problems.
LA - eng
KW - Eddy current problem;
corner singularity; edge singularity.
UR - http://eudml.org/doc/194192
ER -
References
top- A. Alonso and A. Valli, A domain decomposition approach for heterogeneous time-harmonic Maxwell equations. Comput. Methods Appl. Mech. Engrg143 (1997) 97-112.
- A. Alonso-Rodriguez, F. Fernandes and A. Valli, Weak and strong formulations for the time-harmonic eddy-current problem in general domains. Report UTM. Dipartimento di Matematica, Univ. di Trento, Italy 603 (2001).
- H. Ammari, A. Buffa and J.-C. Nédélec, A justification of eddy currents model for the Maxwell equations. SIAM J. Appl. Math.60 (2000) 1805-1823.
- C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional nonsmooth domains. Math. Methods Appl. Sci.21 (1998) 823-864.
- F. Assous, P. Ciarlet Jr. and E. Sonnendrucker, Resolution of the Maxwell equations in a domain with reentrant corners. RAIRO Modél. Math. Anal. Numér.32 (1998) 359-389.
- R. Beck, R. Hiptmair, R.H.W. Hoppe and B. Wohlmuth, Residual based a posteriori error estimators for eddy current computation. ESAIM: M2AN34 (2000) 159-182.
- M. Birman and M. Solomyak, L2-theory of the Maxwell operator in arbitrary domains. Russian Math. Surveys42 (1987) 75-96.
- M. Birman and M. Solomyak, On the main singularities of the electric component of the electro-magnetic field in regions with screens. St. Petersburg. Math. J.5 (1993) 125-139.
- A.-S. Bonnet-Ben Dhia, C. Hazard and S. Lohrengel, A singular field method for the solution of Maxwell's equations in polyhedral domains. SIAM J. Appl. Math.59 (1999) 2028-2044.
- A. Bossavit, Two dual formulations of the 3D eddy-current problem. COMPEL4 (1985) 103-116.
- A. Bossavit, Electromagnétisme en vue de la modélisation. Springer-Verlag (1993).
- D. Colton and R. Kress, Integral equation methods in scattering theory. John Wiley & Sons, Inc., New York, Pure Appl. Math. (1983).
- M. Costabel and M. Dauge, Singularités d'arêtes pour les problèmes aux limites elliptiques, in Journées ``Équations aux Dérivées Partielles'' (Saint-Jean-de-Monts, 1992), Exp. No. IV, 12 p. École Polytech., Palaiseau (1992).
- M. Costabel and M. Dauge, Stable asymptotics for elliptic systems on plane domains with corners. Comm. Partial Differential Equations9 & 10 (1994) 1677-1726.
- M. Costabel and M. Dauge, Singularities of Maxwell's equations on polyhedral domains. Arch. Rational Mech. Anal.151 (2000) 221-276.
- M. Costabel and M. Dauge, Weighted regularization of Maxwell equations in polyhedral domains. A rehabilitation of nodal finite elements. Numer. Math.93 (2002) 239-277.
- M. Costabel, M. Dauge and S. Nicaise, Singularities of Maxwell interface problems. ESAIM: M2AN33 (1999) 627-649.
- M. Dauge, Elliptic boundary value problems on corner domains. Springer-Verlag, Berlin L.N. in Math. 1341 (1988).
- M. Dobrowolski, Numerical approximation of elliptic interface and corner problems. Habilitationsschrift, Bonn, Germany (1981).
- V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations. Springer-Verlag, Springer Ser. Comput. Math. 5 (1986).
- P. Grisvard, Elliptic problems in nonsmooth domains. Monographs and Studies in Mathematics. Pitman, Boston 24 (1985).
- R. Hiptmair, Symmetric coupling for eddy currents problems. SIAM J. Numer. Anal.40 (2002) 41-65.
- V.A. Kondrat'ev, Boundary-value problems for elliptic equations in domains with conical or angular points. Trans. Moscow Math. Soc.16 (1967) 227-313.
- D. Leguillon and E. Sanchez-Palencia, Computation of singular solutions in elliptic problems and elasticity. RMA 5. Masson, Paris (1991).
- D. Mercier, Minimal regularity of the solutions of some transmission problems. Math. Methods Appl. Sci.26 (2003) 321-348.
- S. Nicaise, Polygonal interface problems. Peter Lang, Berlin (1993).
- S. Nicaise and A.-M. Sändig, General interface problems I,II. Math. Methods Appl. Sci.17 (1994) 395-450.
- S. Nicaise and A.-M. Sändig, Transmission problems for the Laplace and elasticity operators: Regularity and boundary integral formulation. Math. Methods Appl. Sci.9 (1999) 855-898.
- S. Nicaise, Edge elements on anisotropic meshes and approximation of the Maxwell equations. SIAM J. Numer. Anal.39 (2001) 784-816.
- R. Picard, On the boundary value problems of electro- and magnetostatics. Proc. Roy. Soc. Edinburgh Sect. A92 (1982) 165-174.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.