Residual based a posteriori error estimators for eddy current computation

Rudi Beck; Ralf Hiptmair; Ronald H.W. Hoppe; Barbara Wohlmuth

ESAIM: Mathematical Modelling and Numerical Analysis (2010)

  • Volume: 34, Issue: 1, page 159-182
  • ISSN: 0764-583X

Abstract

top
We consider H(curl;Ω)-elliptic problems that have been discretized by means of Nédélec's edge elements on tetrahedral meshes. Such problems occur in the numerical computation of eddy currents. From the defect equation we derive localized expressions that can be used as a posteriori error estimators to control adaptive refinement. Under certain assumptions on material parameters and computational domains, we derive local lower bounds and a global upper bound for the total error measured in the energy norm. The fundamental tool in the numerical analysis is a Helmholtz-type decomposition of the error into an irrotational part and a weakly solenoidal part.

How to cite

top

Beck, Rudi, et al. "Residual based a posteriori error estimators for eddy current computation." ESAIM: Mathematical Modelling and Numerical Analysis 34.1 (2010): 159-182. <http://eudml.org/doc/197591>.

@article{Beck2010,
abstract = { We consider H(curl;Ω)-elliptic problems that have been discretized by means of Nédélec's edge elements on tetrahedral meshes. Such problems occur in the numerical computation of eddy currents. From the defect equation we derive localized expressions that can be used as a posteriori error estimators to control adaptive refinement. Under certain assumptions on material parameters and computational domains, we derive local lower bounds and a global upper bound for the total error measured in the energy norm. The fundamental tool in the numerical analysis is a Helmholtz-type decomposition of the error into an irrotational part and a weakly solenoidal part. },
author = {Beck, Rudi, Hiptmair, Ralf, Hoppe, Ronald H.W., Wohlmuth, Barbara},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Residual based a posteriori error estimation; Nédélec's edge elements; Helmholtz decomposition; eddy currents.; finite element method; error bounds; eddy currents; mesh refinement},
language = {eng},
month = {3},
number = {1},
pages = {159-182},
publisher = {EDP Sciences},
title = {Residual based a posteriori error estimators for eddy current computation},
url = {http://eudml.org/doc/197591},
volume = {34},
year = {2010},
}

TY - JOUR
AU - Beck, Rudi
AU - Hiptmair, Ralf
AU - Hoppe, Ronald H.W.
AU - Wohlmuth, Barbara
TI - Residual based a posteriori error estimators for eddy current computation
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 34
IS - 1
SP - 159
EP - 182
AB - We consider H(curl;Ω)-elliptic problems that have been discretized by means of Nédélec's edge elements on tetrahedral meshes. Such problems occur in the numerical computation of eddy currents. From the defect equation we derive localized expressions that can be used as a posteriori error estimators to control adaptive refinement. Under certain assumptions on material parameters and computational domains, we derive local lower bounds and a global upper bound for the total error measured in the energy norm. The fundamental tool in the numerical analysis is a Helmholtz-type decomposition of the error into an irrotational part and a weakly solenoidal part.
LA - eng
KW - Residual based a posteriori error estimation; Nédélec's edge elements; Helmholtz decomposition; eddy currents.; finite element method; error bounds; eddy currents; mesh refinement
UR - http://eudml.org/doc/197591
ER -

References

top
  1. B. Achchab, A. Agouzal, J. Baranger and J. Maitre, Estimateur d'erreur a posteriori hiérarchique. Application aux éléments finis mixtes. IMPACT Comput. Sci. Engrg.1 (1995) 3-35.  
  2. R. Albanese and G. Rubinacci, Formulation of the eddy-current problem. IEE Proc. A137 (1990) 16-22.  
  3. Analysis of three dimensional electromagnetic fileds using edge elements. J. Comp. Phys.108 (1993) 236-245.  
  4. A. Alonso and A. Valli, Some remarks on the characterization of the space of tangential traces of H(rot;Ω) and the construction of an extension operator. Manuscripta math.89 (1996) 159-178.  
  5. H. Ammari, A. Buffa and J.-C. Nédélec, A justification of eddy currents model for the Maxwell equations. Tech. Rep., IAN, University of Pavia, Pavia, Italy (1998).  
  6. C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional nonsmooth domains. Math. Methods Appl. Sci.21 (1998) 823-864.  
  7. D. Arnold, A. Mukherjee and L. Pouly, Locally adapted tetrahedral meshes using bisection. SIAM J. on Sci. Compt (submitted).  
  8. I. Babuska and W. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal.15 (1978) 736-754.  
  9. I. Babuska and W. Rheinboldt, A posteriori error estimates for the finite element method. Internet. J. Numer. Methods Engrg.12 (1978) 1597-1615.  
  10. R. Bank, PLTMG: A Software Package for Solving Elliptic Partial Differential Equations, User's Guide 6.0. SIAM, Philadelphia (1990).  
  11. R. Bank, A. Sherman and A. Weiser, Refinement algorithm and data structures for regular local mesh refinement., in Scientific Computing, R. Stepleman et al., Ed., Vol. 44, IMACS North-Holland, Amsterdam (1983) 3-17.  
  12. R. Bank and A. Weiser, some a posteriori error estimators for elliptic partial differential equations. Math. Comp.44 (1985) 283-301.  
  13. E. Bänsch, Local mesh refinement in 2 and 3 dimensions. IMPACT Comput. Sci. Engrg.3 (1991) 181-191.  
  14. R. Beck, P. Deuflhard, R. Hiptmair, R. Hoppe and B. Wohlmuth, Adaptive multilevel methods for edge element discretizations of Maxwell's equations. Surveys for Mathematics in Industry.  
  15. R. Beck and R. Hiptmair, Multilevel solution of the time-harmonic Maxwell equations based on edge elements. Tech. Rep. SC-96-51, ZIB Berlin (1996). in Internat. J. Numer. Methods Engrg. (To appear).  
  16. J. Bey, Tetrahedral grid refinement. Computing55 (1995) 355-378.  
  17. F. Bornemann, An adaptive multilevel approach to parabolic equations I. General theory and 1D-implementation. IMPACT Comput. Sci. Engrg.2 (1990) 279-317.  
  18. F. Bornemann, An adaptive multilevel approach to parabolic equations II. Variable-order time discretization based on a multiplicative error correction. IMPACT Comput. Sci. Engrg.3 (1991) 93-122.  
  19. F. Bornemann, B. Erdmann and R. Kornhuber, A posteriori error estimates for elliptic problems in two and three spaces dimensions. SIAM J. Numer. Anal.33 (1996) 1188-1204.  
  20. A. Bossavit, Mixed finite elements and the complex of Whitney forms, in The Mathematics of Finite Elements and Applications VI J. Whiteman Ed., Academic Press, London (1988) 137-144.  
  21. A. Bossavit, A rationale for edge elements in 3D field computations. IEEE Trans. Mag.24 (1988) 74-79.  
  22. A. Bossavit, Solving Maxwell's equations in a closed cavity and the question of spurious modes. IEEE Trans. Mag.26 (1990) 702-705.  
  23. A. Bossavit, Électromagnétisme, en vue de la modélisation. Springer-Verlag, Paris (1993).  
  24. A. Bossavit, Computational Electromagnetism. Variational Formulation, Complementarity, Edge Elements.in Academic Press Electromagnetism Series, no. 2 Academic Press, San Diego (1998).  
  25. D. Braess and R. Verfürth, A posteriori error estimators for the Raviart-Thomas element. SIAM J. Numer. Anal.33 (1996) 2431-2445.  
  26. C. Carstensen, A posteriori error estimate for the mixed finite element method. Math. Comp.66 (1997) 465-476.  
  27. P. Ciarlet, The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications, Vol. 4 North-Holland, Amsterdam (1978).  
  28. M. Clemens, R. Schuhmann, U. van Rienen and T. Weiland, Modern Krylov subspace methods in electromagnetic field computation using the finite integration theory. ACES J. Appl. Math.11 (1996) 70-84.  
  29. M. Clemens and T. Weiland, Transient eddy current calculation with the FI-method. in Proc. CEFC '98, IEEE (1998); IEEE Trans. Mag. submitted  
  30. P. Clément, Approximation by finite element functions using local regularization. Revue Franc. Automat. Inform. Rech. Operat.9, R-2 (1975) 77-84.  
  31. M. Costabel and M. Dauge, Singularities of electromagnetic fields in polyhedral domains. Tech. Rep. 97-19, IRMAR, Rennes, France (1997).  
  32. M. Costabel, M. Dauge and S. Nicaise, Singularities of Maxwell interface problems, Tech. Rep. 98-24, IRMAR, Rennes, France (1998).  
  33. H. Dirks, Quasi-stationary fields for microelectronic applications. Electrical Engineering79 (1996) 145-155.  
  34. P. Dular, J.-Y. Hody, A. Nicolet, A. Genon and W. Legros, Mixed finite elements associated with a collection of tetrahedra, hexahedra and prisms. IEEE Trans Magnetics MAG-30 (1994) 2980-2983.  
  35. K. Erikson, D. Estep, P. Hansbo and C. Johnson, Introduction to adaptive methods for differential equations. Acta Numerica4 (1995) 105-158.  
  36. K. Eriksson and C. Johnson, An adaptive finite element method for linear elliptic problems. Math. Comp.50 (1988) 361-383.  
  37. V. Girault and P. Raviart, Finite element methods for Navier-Stokes equations, Springer-Verlag, Berlin (1986).  
  38. E. Hairer and G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Springer-Verlag, Berlin, Heidelberg, New York (1991).  
  39. R. Hiptmair, Multigrid method for Maxwell's equations. Tech. Rep. 374, Institut für Mathematik, Universität Augsburg (1997).  
  40. R. Hiptmair, Canonical construction of finite elements. Math. Comp.68 (1999) 1325-1346.  
  41. R. Hoppe and B. Wohlmuth, Adaptive multilevel iterative techniques for nonconforming finite element discretizations. East-West J. Numer. Math.3 (1995) 179-197.  
  42. R. Hoppe and B. Wohlmuth, A comparison of a posteriori error estimators for mixed finite elements. Math. Comp.68 (1999) 1347-1378.  
  43. R. Hoppe and B. Wohlmuth, Element-oriented and edge-oriented local error estimators for nonconforming finite element methods. Model. Math. Anal. Numér.30 (1996) 237-263.  
  44. R. Hoppe and B. Wohlmuth, Adaptive multilevel techniques for mixed finite element discretizations of elliptic boundary value problems. SIAM J. Numer. Anal.34 (1997) 1658-1687.  
  45. R. Hoppe and B. Wohlmuth, Hierarchical basis error estimators for Raviart-Thomas discretizations of arbitrary order, in Finite Element Methods: Superconvergence, Post-processing and A Posteriori Estimates, M. Krizck, P. Neittaanmäki and R. Stenberg Eds., Marcel Dekker, New York (1997) 155-167.  
  46. J. Maubach, Local bisection refinement for n-simplicial grids generated by reflection. SIAM J. Sci. Stat. Comp.16 (1995) 210-227.  
  47. P. Monk, A mixed method for approximating Maxwell's equations. SIAM J. Numer. Anal.28 (1991) 1610-1634.  
  48. P. Monk, Analysis of a finite element method for Maxwell's equations. SIAM J. Numer. Anal.29 (1992) 714-729.  
  49. J. Nédélec, Mixed finite elements in R3, Numer. Math.35 (1980) 315-341.  
  50. E. Ong, Hierarchical basis preconditioners for second order elliptic problems in three dimensions. Ph.D. thesis, Dept. of Math., UCLA, Los Angeles, CA, USA (1990).  
  51. P. Oswald, Multilevel finite element approximation. Teubner Skripten zur Numerik, B.G. Teubner, Stuttgart (1994).  
  52. J. P. Ciarlet and J. Zou, Fully discrete finite element approaches for time-dependent Maxwell equations. Tech. Rep. TR MATH-96-31 (105), Department of Mathematics, The Chinese University of Hong Kong (1996). Num. Math. (to appear).  
  53. L. R. Scott and Z. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp.54 (1990) 483-493.  
  54. R. Verfürth, A posteriori error estimators for nonlinear problems. Finite element discretizations of elliptic equations. Math. Comp.62 (1994) 445-475.  
  55. R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Chichester, Stuttgart (1996).  
  56. H. Whitney, Geometric Integration Theory. Princeton Univ. Press, Princeton (1957).  
  57. J. Zhu and O. Zienkiewicz, Adaptive techniques in the finite element method. Commun. Appl. Numer. Methods4 (1988) 197-204.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.