Approximation of the vibration modes of a plate coupled with a fluid by low-order isoparametric finite elements
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 38, Issue: 6, page 1055-1070
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topHernández, Erwin. "Approximation of the vibration modes of a plate coupled with a fluid by low-order isoparametric finite elements." ESAIM: Mathematical Modelling and Numerical Analysis 38.6 (2010): 1055-1070. <http://eudml.org/doc/194247>.
@article{Hernández2010,
abstract = {
We analyze an isoparametric finite element method to compute the
vibration modes of a plate, modeled by Reissner-Mindlin equations,
in contact with a compressible fluid, described in terms of
displacement variables. To avoid locking in the plate, we consider
a low-order method of the so called MITC (Mixed Interpolation of
Tensorial Component) family on quadrilateral meshes. To avoid
spurious modes in the fluid, we use a low-order hexahedral
Raviart-Thomas elements and a non conforming coupling is used on
the fluid-structure interface.
Applying a general approximation theory for spectral problems,
under mild assumptions, we obtain optimal order error estimates
for the computed eigenfunctions, as well as a double order for the
eigenvalues. These estimates are valid with constants independent
of the plate thickness. Finally, we report several numerical
experiments showing the behavior of the methods.
},
author = {Hernández, Erwin},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Reissner-Mindlin; MITC methods; fluid-structure
interaction.},
language = {eng},
month = {3},
number = {6},
pages = {1055-1070},
publisher = {EDP Sciences},
title = {Approximation of the vibration modes of a plate coupled with a fluid by low-order isoparametric finite elements},
url = {http://eudml.org/doc/194247},
volume = {38},
year = {2010},
}
TY - JOUR
AU - Hernández, Erwin
TI - Approximation of the vibration modes of a plate coupled with a fluid by low-order isoparametric finite elements
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 38
IS - 6
SP - 1055
EP - 1070
AB -
We analyze an isoparametric finite element method to compute the
vibration modes of a plate, modeled by Reissner-Mindlin equations,
in contact with a compressible fluid, described in terms of
displacement variables. To avoid locking in the plate, we consider
a low-order method of the so called MITC (Mixed Interpolation of
Tensorial Component) family on quadrilateral meshes. To avoid
spurious modes in the fluid, we use a low-order hexahedral
Raviart-Thomas elements and a non conforming coupling is used on
the fluid-structure interface.
Applying a general approximation theory for spectral problems,
under mild assumptions, we obtain optimal order error estimates
for the computed eigenfunctions, as well as a double order for the
eigenvalues. These estimates are valid with constants independent
of the plate thickness. Finally, we report several numerical
experiments showing the behavior of the methods.
LA - eng
KW - Reissner-Mindlin; MITC methods; fluid-structure
interaction.
UR - http://eudml.org/doc/194247
ER -
References
top- S.M. Alessandrini, D.N. Arnold, R.S. Falk and A.L. Madureira, Derivation and justification of plate models by variational methods, in Plates and Shells, M. Fortin Ed., AMS, Providence, CRM Proc. Lect. Notes Ser.21 (1999) 1–20.
- D.N. Arnold and R.S. Falk, A uniformly accurate finite element method for the Reissner-Mindlin plate. SIAM J. Numer. Anal.26 (1989) 1276–1290.
- K.J. Bathe and F. Brezzi, On the convergence of a four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation in Mathematics of Finite Elements an Applications V, J.R. Whiteman Ed., Academic Press, London (1985) 491–503.
- K.J. Bathe and E.N. Dvorkin, A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation. Int. J. Numer. Methods Eng.21 (1985) 367–383.
- A. Bermúdez and R. Rodríguez, Finite element computation of the vibration modes of a fluid-solid system. Comp. Methods Appl. Mech. Eng.119 (1994) 355–370.
- A. Bermúdez, P. Gamallo and R. Rodríguez, An hexahedral face element for elastoacoustic vibration problems. J. Comp. Acoust.119 (1994) 355–370.
- A. Bermúdez, R. Durán, M.A. Muschietti, R. Rodríguez and J. Solomin, Finite element vibration analysis of fluid-solid systems without spurious modes. SIAM J. Numer. Anal.32 (1995) 1280–1295.
- F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991).
- F. Brezzi, M. Fortin and R. Stenberg, Quasi-optimal error bounds for approximation of shear-stresses in Mindlin-Reissner plate models. Math. Models Methods Appl. Sci.1 (1991) 125–151.
- R. Durán and E. Liberman, On mixed finite element methods for the Reissner-Mindlin plate model. Math. Comp.58 (1992) 561–573.
- R. Durán, L. Hervella-Nieto, E. Liberman, R. Rodríguez and J. Solomin, Approximation of the vibration modes of a plate by Reissner-Mindlin equations. Math. Comp.68 (1999) 1447–1463.
- R. Durán, L. Hervella-Nieto, E. Liberman, R. Rodríguez and J. Solomin, Finite element analysis of the vibration problem of a plate coupled with a fluid. Numer. Math.86 (2000) 591–616.
- R. Durán, E. Hernández, L. Hervella-Nieto, E. Liberman and R. Rodríguez, Computation of the vibration modes of plates and shells by low-order MITC quadrilateral finite elements. SIAM J. Numer. Anal.41 (2003) 1751–1772.
- P. Gamallo, Métodos numéricos de elementos finitos en problemas de interacción fluido-estructura. Ph.D. Thesis, U. de Santiago de Compostela, Spain (2002).
- V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo (1986).
- T.J.R. Hughes, The Finite Element Method: Linear Static and Dinamic Finite Element Analysis. Prentice-Hall, Englewood Cliffs, NJ (1987).
- H.J.-P. Morand and R. Ohayon, Fluid-structure interactions. John Wiley & Sons, New York (1995).
- R. Rodríguez and J. Solomin, The order of convergence of eigenfrequencies in finite element approximations of fluid-structure interaction problems. Math. Comp.65 (1996) 1463–1475.
- P.A. Raviart and J.M. Thomas, A mixed finite element method for second order elliptic problems, in Mathematical Aspects of Finite Element Methods, Springer-Verlag, Berlin, Heidelberg, New York. Lect. Notes Math.606 (1977) 292–315.
- R. Stenberg and M. Suri, An hp error analysis of MITC plate elements. SIAM J. Numer. Anal.34 (1997) 544–568.
- J.M. Thomas, Sur l'analyse numérique des méthodes d'éléments finis hybrides et mixtes. Thèse de Doctorat d'Etat, Université Pierre et Marie Curie, Paris 6, France (1977).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.