A uniformly controllable and implicit scheme for the 1-D wave equation
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 39, Issue: 2, page 377-418
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- M. Asch and G. Lebeau, Geometrical aspects of exact boundary controllability for the wave equation: a numerical study. COCV3 (1998) 163–212.
- H.T. Banks, K. Ito and Y. Wang, Exponentially stable approximations of weakly damped wave equations. Ser. Num. Math., Birkhäuser 100 (1990) 1–33.
- F. Bourquin, Numerical methods for the control of flexible structures. J. Struct. Control8 (2001).
- C. Castro and S. Micu, Boundary controllability of a semi-discrete linear 1-D wave equation with mixed finite elements. SIAM J. Numer. Anal., submitted.
- C. Castro, S. Micu and A. Münch, Boundary controllability of a semi-discrete linear 2-D wave equation with mixed finite elements, submitted.
- I. Charpentier and Y. Maday, Identification numérique de contrôles distribués pour l'équation des ondes. C.R. Acad. Sci. Paris Sér. I322 (1996) 779–784.
- G.C. Cohen, Higher-order Numerical Methods for Transient Wave Equations. Scientific Computation, Springer (2002).
- R. Glowinski, Ensuring well-posedness by analogy: Stokes problem and boundary control for the wave equation. J. Comput. Phys.103 (1992) 189–221.
- R. Glowinski, C.H. Li and J.-L. Lions, A numerical approach to the exact boundary controllability of the wave equation (I). Dirichlet Controls: Description of the numerical methods. Japan J. Appl. Math.7 (1990) 1–76.
- R. Glowinski, W. Kinton and M.F. Wheeler, A mixed finite element formulation for the boundary controllability of the wave equation. Int. J. Numer. Methods Engrg.27 (1989) 623–636.
- G.H. Golub and C. Van Loan, Matrix Computations. Johns Hopkins Press, Baltimore (1989).
- J.A. Infante and E. Zuazua, Boundary observability for the space-discretizations of the 1-D wave equation. ESAIM: M2AN33 (1999) 407–438.
- A.E. Ingham, Some trigonometrical inequalities with applications to the theory of series. Math. Z.41 (1936) 367–369.
- V. Komornik, Exact controllability and Stabilization - The multiplier method. J. Wiley and Masson (1994).
- S. Krenk, Dispersion-corrected explicit integration of the wave equation. Comp. Methods Appl. Mech. Engrg.191 (2001) 975–987.
- J.L. Lions, Contrôlabilité exacte – Pertubations et stabilisation de systèmes distribués, Tome 1, Masson, Paris (1988).
- S. Micu, Uniform boundary controllability of a semi-discrete 1-D wave equation. Numer. Math.91 (2002) 723–728.
- A. Münch, Family of implicit schemes uniformly controllable for the 1-D wave equation. C.R. Acad. Sci. Paris Sér. I339 (2004) 733–738.
- A. Münch and A.F. Pazoto, Uniform stabilization of a numerical approximation of a locally damped wave equation. ESAIM: COCV, submitted.
- M. Negreanu and E. Zuazua, Uniform boundary controllability of a discrete 1-D wave equation. Systems Control Lett.48 (2003) 261–280.
- M. Negreanu and E. Zuazua, Discrete Ingham inequalities and applications. C.R. Acad. Sci. Paris Sér. I338 (2004) 281–286.
- M. Negreanu and E. Zuazua, Convergence of a multi-grid method for the controlabillity of the 1-D wave equation. C.R. Acad. Sci. Paris, Sér. I338 (2004) 413–418.
- P.A. Raviart and J.M. Thomas, Introduction à l'analyse numérique des équations aux dérivées partielles. Masson, Paris (1983).
- D.L. Russell, Controllability and stabilization theory for linear partial differential equations: recent progress and open questions. SIAM Rev.20 (1978) 639–737.
- J.M. Urquiza, Contrôle d'équations des ondes linéaires et quasilinéaires. Ph.D. Thesis Université de Paris VI (2000).
- E. Zuazua, Boundary observability for finite-difference space semi-discretizations of the 2-D wave equation in the square. J. Math. Pures. Appl.78 (1999) 523–563.
Citations in EuDML Documents
top- Nicolae Cîndea, Enrique Fernández-Cara, Arnaud Münch, Numerical controllability of the wave equation through primal methods and Carleman estimates
- Arnaud Münch, Ademir Fernando Pazoto, Uniform stabilization of a viscous numerical approximation for a locally damped wave equation
- Farah Abdallah, Serge Nicaise, Julie Valein, Ali Wehbe, Uniformly exponentially or polynomially stable approximations for second order evolution equations and some applications
- Sylvain Ervedoza, Observability properties of a semi-discrete 1d wave equation derived from a mixed finite element method on nonuniform meshes
- Sylvain Ervedoza, Resolvent estimates in controllability theory and applications to the discrete wave equation