# Lagrange multipliers for higher order elliptic operators

ESAIM: Mathematical Modelling and Numerical Analysis (2010)

- Volume: 39, Issue: 2, page 419-429
- ISSN: 0764-583X

## Access Full Article

top## Abstract

top## How to cite

topZuppa, Carlos. "Lagrange multipliers for higher order elliptic operators." ESAIM: Mathematical Modelling and Numerical Analysis 39.2 (2010): 419-429. <http://eudml.org/doc/194267>.

@article{Zuppa2010,

abstract = {
In this paper, the Babuška's theory of Lagrange multipliers is extended
to higher order elliptic Dirichlet problems. The resulting variational
formulation provides an efficient numerical squeme in meshless methods for
the approximation of elliptic problems with essential boundary conditions.
},

author = {Zuppa, Carlos},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis},

keywords = {Elliptic operators;
Dirichlet boundary-value problem; Lagrange multipliers.; elliptic operators; Lagrange multipliers; Dirichlet boundary value problem; finite element method; numerical results},

language = {eng},

month = {3},

number = {2},

pages = {419-429},

publisher = {EDP Sciences},

title = {Lagrange multipliers for higher order elliptic operators},

url = {http://eudml.org/doc/194267},

volume = {39},

year = {2010},

}

TY - JOUR

AU - Zuppa, Carlos

TI - Lagrange multipliers for higher order elliptic operators

JO - ESAIM: Mathematical Modelling and Numerical Analysis

DA - 2010/3//

PB - EDP Sciences

VL - 39

IS - 2

SP - 419

EP - 429

AB -
In this paper, the Babuška's theory of Lagrange multipliers is extended
to higher order elliptic Dirichlet problems. The resulting variational
formulation provides an efficient numerical squeme in meshless methods for
the approximation of elliptic problems with essential boundary conditions.

LA - eng

KW - Elliptic operators;
Dirichlet boundary-value problem; Lagrange multipliers.; elliptic operators; Lagrange multipliers; Dirichlet boundary value problem; finite element method; numerical results

UR - http://eudml.org/doc/194267

ER -

## References

top- S. Agmon, Lectures on elliptic boundary value problems. D. Van Nostrand, Princeton, N. J. (1965).
- I. Babuška, The finite element method with lagrange multipliers. Numer. Math. 20 (1973) 179–192. Zbl0258.65108
- I. Babuška and A.K. Aziz, Survey lectures on the mathematical foundations of the finite element method, The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations. Academic Press, New York (1972) 5–359.
- T. Belytschko, Y. Krongauz. D. Organ, M. Fleming and P. Krysl, Meshless methods: an overview and recent development. Comput. Methods Appl. Mech. Engrg.139 (1996a) 3–47. Zbl0891.73075
- J.M. Berezanskii, Expansions in Eigenfunctions of Self-Adjoint Operators, Translations of Mathematical Monographs 17, American Mathematical Society, Providence, R.I. (1968).
- S.C. Brener and L.R. Scott, The mathematical theory of finite elements methods. Springer-Verlag, New York (1994).
- C.A. Duarte and J.T. Oden, H-p clouds - an h-p meshless method. Num. Methods Partial Differential Equations. 1 (1996) 1–34. Zbl0869.65069
- S. Li and W.K. Liu, Meshfree and particle methods and their applications. Applied Mechanics Reviews (ASME) (2001).
- J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Dunod, Paris (1968). Zbl0165.10801
- G.R. Liu, Mesh Free Methods: Moving Beyond the Finite Element Method. CRC Press, Boca Raton, USA (2002).
- J. Nečas, Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967).
- J.T. Oden and J.N. Reddy, An introduction to the mathematical theory of finite elements. Wiley Interscience, New York (1976). Zbl0336.35001
- K.T. Smith, Inequalities for formally positive integro-differential forms. Bull. Amer. Math. Soc. 67 (1961) 368–370. Zbl0103.07602
- L.R. Volevič, Solvability of boundary value problems for general elliptic systems. Amer. Math. Soc. Transl.67 (1968) 182–225.
- C. Zuppa, G. Simonetti and A. Azzam, The h-p Clouds meshless method and lagrange multipliers for higher order elliptic operators. In preparation.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.