Finite element approximation for degenerate parabolic equations. an application of nonlinear semigroup theory

Akira Mizutani; Norikazu Saito; Takashi Suzuki

ESAIM: Mathematical Modelling and Numerical Analysis (2010)

  • Volume: 39, Issue: 4, page 755-780
  • ISSN: 0764-583X

Abstract

top
Finite element approximation for degenerate parabolic equations is considered. We propose a semidiscrete scheme provided with order-preserving and L1 contraction properties, making use of piecewise linear trial functions and the lumping mass technique. Those properties allow us to apply nonlinear semigroup theory, and the wellposedness and stability in L1 and L∞, respectively, of the scheme are established. Under certain hypotheses on the data, we also derive L1 convergence without any convergence rate. The validity of theoretical results is confirmed by numerical examples.

How to cite

top

Mizutani, Akira, Saito, Norikazu, and Suzuki, Takashi. "Finite element approximation for degenerate parabolic equations. an application of nonlinear semigroup theory." ESAIM: Mathematical Modelling and Numerical Analysis 39.4 (2010): 755-780. <http://eudml.org/doc/194285>.

@article{Mizutani2010,
abstract = { Finite element approximation for degenerate parabolic equations is considered. We propose a semidiscrete scheme provided with order-preserving and L1 contraction properties, making use of piecewise linear trial functions and the lumping mass technique. Those properties allow us to apply nonlinear semigroup theory, and the wellposedness and stability in L1 and L∞, respectively, of the scheme are established. Under certain hypotheses on the data, we also derive L1 convergence without any convergence rate. The validity of theoretical results is confirmed by numerical examples. },
author = {Mizutani, Akira, Saito, Norikazu, Suzuki, Takashi},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Finite element method; degenerate parabolic equation; nonlinear semigroup.; order-preserving; contraction properties; rate of convergence},
language = {eng},
month = {3},
number = {4},
pages = {755-780},
publisher = {EDP Sciences},
title = {Finite element approximation for degenerate parabolic equations. an application of nonlinear semigroup theory},
url = {http://eudml.org/doc/194285},
volume = {39},
year = {2010},
}

TY - JOUR
AU - Mizutani, Akira
AU - Saito, Norikazu
AU - Suzuki, Takashi
TI - Finite element approximation for degenerate parabolic equations. an application of nonlinear semigroup theory
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 39
IS - 4
SP - 755
EP - 780
AB - Finite element approximation for degenerate parabolic equations is considered. We propose a semidiscrete scheme provided with order-preserving and L1 contraction properties, making use of piecewise linear trial functions and the lumping mass technique. Those properties allow us to apply nonlinear semigroup theory, and the wellposedness and stability in L1 and L∞, respectively, of the scheme are established. Under certain hypotheses on the data, we also derive L1 convergence without any convergence rate. The validity of theoretical results is confirmed by numerical examples.
LA - eng
KW - Finite element method; degenerate parabolic equation; nonlinear semigroup.; order-preserving; contraction properties; rate of convergence
UR - http://eudml.org/doc/194285
ER -

References

top
  1. R.A. Adams, Sobolev Spaces. Academic Press, New York, London (1975).  
  2. P. Bénilan, M.G. Crandall and P. Sacks, Some L1 existence and dependence results for semilinear elliptic equations under nonlinear boundary conditions. Appl. Math. Optim.17 (1988) 203–224.  
  3. A.E. Berger, H. Brezis and J.C.W Rogers, A numerical method for solving the problem ut - Δƒ(u) = 0. RAIRO Anal. Numer.13 (1979) 297–312.  
  4. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer (1994).  
  5. H. Brezis and A. Pazy, Convergence and approximation of semigroups of nonlinear operators in Banach spaces. J. Funct. Anal.9 (1972) 63–74.  
  6. H. Brezis and W. Strauss, Semi-linear second-order elliptic equations in L1. J. Math. Soc. Japan25 (1973) 565–590.  
  7. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978).  
  8. P.G. Ciarlet, Basic Error Estimates for Elliptic Problems, in Finite Element Methods (Part 1), P.G. Ciarlet and J.L. Lions Eds., Handbook of Numerical Analysis, 17–351, Elsevier Science Publishers B.V., Amsterdam (1991).  
  9. P.G. Ciarlet and P.A. Raviart, Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Engrg.2 (1973) 17–31.  
  10. J.F. Ciavaldini, Analyse numérique d'un problème de Stefan à deux phases par une méthode d'éléments finis. SIAM J. Numer. Anal.12 (1975) 464–487.  
  11. B. Cockburn and G. Gripenberg, Continuous dependence on the nonlinearities of solutions of degenerate parabolic equations. J. Differential Equations151 (1999) 231–251.  
  12. M.G. Crandall and T. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces. Amer. J. Math.93 (1971) 265–293.  
  13. C.M. Elliott, Error analysis of the enthalpy method for the Stefan problem. IMA J. Numer. Anal.7 (1987) 61–71.  
  14. C.M. Elliott and J.R. Ockendon, Weak and Variational Methods for Moving Boundary Problems. Pitman, Boston. Res. Notes Math.59 (1982).  
  15. A. Friedman, Variational Principles and Free-Boundary Problems. Wiley, New York (1982).  
  16. H. Fujii, Some remarks on finite element analysis of time-dependent field problems, in Theory and Practice in Finite Element Structural Analysis, University of Tokyo Press, Tokyo (1973) 91–106.  
  17. H. Fujita, N. Saito and T. Suzuki, Operator Theory and Numerical Methods. North-Holland, Amsterdam (2001).  
  18. B.H. Gilding and L.A. Peletier, On a class of similarity solutions of the porous media equation. J. Math. Anal. Appl.55 (1976) 351–364.  
  19. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985).  
  20. W. Jäger and J. Kačur, Solution of doubly nonlinear and degenerate parabolic problems by relaxation schemes. RAIRO Modél. Math. Anal. Numér.29 (1995) 605–627.  
  21. J. Kačur, A. Handlovicová and M. Kacurová, Solution of nonlinear diffusion problems by linear approximation schemes. SIAM J. Numer. Anal.30 1703-1722 (1993).  
  22. T. Kato, Schrödinger operators with singular potentials. Israel J. Math.13 (1972) 135–148.  
  23. M.N. Le Roux, Semi-discretization in time for a fast diffusion equation. J. Math. Anal. Appl.137 (1989) 354–370.  
  24. M.N. Le Roux and P.E. Mainge, Numerical solution of a fast diffusion equation. Math. Comp.68 (1999) 461–485.  
  25. P. Lesaint and J. Pousin, Error estimates for a nonlinear degenerate parabolic equation. Math. Comp.59 (1992) 339–358.  
  26. E. Magenes, R.H. Nochetto and C. Verdi, Energy error estimates for a linear scheme to approximate nonlinear parabolic problems. RAIRO Modél. Math. Anal. Numér.21 (1987) 655–678.  
  27. E. Magenes, C. Verdi and A. Visintin, Semigroup approach to the Stefan problem with non-linear flux. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 75 (1983) 24–33.  
  28. E. Magenes, C. Verdi, and A. Visintin, Theoretical and numerical results on the two-phase Stefan problem. SIAM J. Numer. Anal.26 (1989) 1425–1438.  
  29. I. Miyadera, Nonlinear Semigroups. Amer. Math. Soc. Colloq. Publ. (1992).  
  30. R.H. Nochetto, Error estimates for two-phase Stefan problems in several space variables. I. Linear boundary conditions. Calcolo22 (1985) 457–499.  
  31. P.H. Nochetto, and C. Verdi, Approximation of degenerate parabolic problems using numerical integration. SIAM J. Numer. Anal.25 (1988) 784–814.  
  32. L.A. Peletier, The porous media equation, in Applications of Nonlinear Analysis in the Physical Sciences (Bielefeld, 1979), Surveys Reference Works Math., 6, Pitman, Boston, Mass.-London (1981) 229–241.  
  33. R. Rannacher and R. Scott, Some optimal error estimates for piecewise linear finite element approximation. Math. Comp.38 (1982) 437–445.  
  34. M. Rose, Numerical methods for flows through porous media, I. Math. Comp.40 (1983) 435–467.  
  35. L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp.54 (1990) 483–493.  
  36. R.E. White, An enthalpy formulation of the Stefan problem. SIAM J. Numer. Anal.19 (1982) 1129–1157.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.