Displaying similar documents to “Finite element approximation for degenerate parabolic equations. an application of nonlinear semigroup theory”

Analysis of an Asymptotic Preserving Scheme for Relaxation Systems

Francis Filbet, Amélie Rambaud (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We consider an asymptotic preserving numerical scheme initially proposed by F. Filbet and S. Jin [229 (2010)] and G. Dimarco and L. Pareschi [49 (2011) 2057–2077] in the context of nonlinear and stiff kinetic equations. Here, we propose a convergence analysis of such a scheme for the approximation of a system of transport equations with a nonlinear source term, for which the asymptotic limit is given by a conservation law. We investigate the convergence of the approximate solution ( ...

An implicit scheme to solve a system of ODEs arising from the space discretization of nonlinear diffusion equations

Éric Boillat (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

In this article, we consider the initial value problem which is obtained after a space discretization (with space step ) of the equations governing the solidification process of a multicomponent alloy. We propose a numerical scheme to solve numerically this initial value problem. We prove an error estimate which is not affected by the step size chosen in the space discretization. Consequently, our scheme provides global convergence without any stability condition between and...

An analysis of electrical impedance tomography with applications to Tikhonov regularization

Bangti Jin, Peter Maass (2012)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

This paper analyzes the continuum model/complete electrode model in the electrical impedance tomography inverse problem of determining the conductivity parameter from boundary measurements. The continuity and differentiability of the forward operator with respect to the conductivity parameter in -norms are proved. These analytical results are applied to several popular regularization formulations, which incorporate information of smoothness/sparsity on the inhomogeneity...

On Numerical Solution of the Gardner–Ostrovsky Equation

M. A. Obregon, Y. A. Stepanyants (2012)

Mathematical Modelling of Natural Phenomena

Similarity:

A simple explicit numerical scheme is proposed for the solution of the Gardner–Ostrovsky equation ( + + + + ) = which is also known as the extended rotation-modified Korteweg–de Vries (KdV) equation. This equation is used for the description of internal oceanic waves affected by Earth’ rotation. Particular...