Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 39, Issue: 5, page 863-882
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBartels, Sören. "Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices." ESAIM: Mathematical Modelling and Numerical Analysis 39.5 (2010): 863-882. <http://eudml.org/doc/194291>.
@article{Bartels2010,
abstract = {
This article discusses the numerical approximation of
time dependent Ginzburg-Landau equations. Optimal
error estimates which are robust with respect
to a large Ginzburg-Landau parameter are established for a
semi-discrete in time and a fully discrete approximation
scheme. The proofs rely on an asymptotic
expansion of the exact solution and a stability result
for degree-one Ginzburg-Landau vortices. The error bounds
prove that degree-one vortices can be approximated robustly
while unstable higher degree vortices are critical.
},
author = {Bartels, Sören},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Ginzburg-Landau equations; numerical approximation;
error analysis; spectral estimate; finite element method.; error analysis},
language = {eng},
month = {3},
number = {5},
pages = {863-882},
publisher = {EDP Sciences},
title = {Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices},
url = {http://eudml.org/doc/194291},
volume = {39},
year = {2010},
}
TY - JOUR
AU - Bartels, Sören
TI - Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 39
IS - 5
SP - 863
EP - 882
AB -
This article discusses the numerical approximation of
time dependent Ginzburg-Landau equations. Optimal
error estimates which are robust with respect
to a large Ginzburg-Landau parameter are established for a
semi-discrete in time and a fully discrete approximation
scheme. The proofs rely on an asymptotic
expansion of the exact solution and a stability result
for degree-one Ginzburg-Landau vortices. The error bounds
prove that degree-one vortices can be approximated robustly
while unstable higher degree vortices are critical.
LA - eng
KW - Ginzburg-Landau equations; numerical approximation;
error analysis; spectral estimate; finite element method.; error analysis
UR - http://eudml.org/doc/194291
ER -
References
top- H.W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations. Math. Z.183 (1983), 311–341.
- S. Bartels, A posteriori error analysis for Ginzburg-Landau type equations. In preparation (2004).
- A. Beaulieu, Some remarks on the linearized operator about the radial solution for the Ginzburg-Landau equation. Nonlinear Anal.54 (2003) 1079–1119.
- F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau vortices. Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston, MA (1994).
- S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Texts in Applied Mathematics, Springer-Verlag, New York (2002).
- X. Chen, Spectrum for the Allen-Cahn, Cahn-Hilliard, and phase-field equations for generic interfaces. Comm. Partial Differential Equations19 (1994) 1371–1395.
- Z. Chen and K.-H. Hoffmann, Numerical studies of a non-stationary Ginzburg-Landau model for superconductivity. Adv. Math. Sci. Appl.5 (1995) 363–389.
- X. Chen, C.M. Elliott and T. Qi, Shooting method for vortex solutions of a complex-valued Ginzburg-Landau equation. Proc. Roy. Soc. Edinburgh Sect. A124 (1994) 1075–1088.
- P. de Mottoni and M. Schatzman, Geometrical evolution of developed interfaces. Trans. Amer. Math. Soc.347 (1995) 1533–1589.
- S. Ding and Z. Liu, Hölder convergence of Ginzburg-Landau approximations to the harmonic map heat flow. Nonlinear Anal.46 (2001) 807–816.
- Q. Du, M. Gunzburger and J. Peterson, Analysis and approximation of the Ginzburg-Landau model of superconductivity. SIAM Rev.34 (1992), 54–81
- Q. Du, M. Gunzburger and J. Peterson, Finite element approximation of a periodic Ginzburg-Landau model for type- superconductors. Numer. Math.64 (1993) 85–114.
- W. E, Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity. Phys. D77 (1994) 383–404.
- L.C. Evans, Partial differential equations. Graduate Studies in Mathematics, American Mathematical Society, Providence, RI (1998).
- X. Feng and A. Prohl, Numerical analysis of the Cahn-Hilliard equation and approximation of the Hele-Shaw problem. Interfaces Free Bound.7 (2005) 1–28.
- X. Feng and A. Prohl, Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows. Numer. Math.94 (2003) 33–65.
- X. Feng and A. Prohl, Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits. Math. Comp.73 (2004) 541-567.
- V. Ginzburg and L. Landau, On the theory of superconductivity. Zh. Èksper. Teoret. Fiz.20 (1950) 1064–1082, in Men of Physics, L.D. Landau, D. ter Haar, Eds., Pergamon, Oxford (1965) 138–167.
- R.-M. Hervé and M. Hervé, Étude qualitative des solutions réelles d'une équation différentielle liée à l'équation de Ginzburg-Landau. Ann. Inst. H. Poincaré Anal. Non Linéaire11 (1994) 427–440.
- K.-H. Hoffmann, J. Zou, Finite element approximations of Landau-Ginzburg's equation model for structural phase transitions in shape memory alloys. RAIRO Modél. Math. Anal. Numér.29 (1995) 629–655.
- A. Jaffe and C. Taubes, Vortices and monopoles. Progress in Physics, Birkhäuser Boston, Inc., Boston, MA (1994).
- D. Kessler, R.H. Nochetto and A. Schmidt, A posteriori error control for the Allen-Cahn problem: circumventing Gronwall's inequality. Preprint (2003).
- E.H. Lieb and M. Loss, Symmetry of the Ginzburg-Landau minimizer in a disc. Math. Res. Lett.1 (1994) 701–715.
- F.H. Lin, Complex Ginzburg-Landau equations and dynamics of vortices, filaments, and codimension-2 submanifolds. Comm. Pure Appl. Math.51 (1998) 385–441.
- F.H. Lin, Some dynamical properties of Ginzburg-Landau vortices. Comm. Pure Appl. Math.49 (1996) 323–359.
- F.H. Lin, The dynamical law of Ginzburg-Landau vortices. Proc. of the Conference on Nonlinear Evolution Equations and Infinite-dimensional Dynamical Systems (Shanghai, 1995), World Sci. Publishing, River Edge, NJ (1997) 101–110.
- F.H. Lin and Q. Du, Ginzburg-Landau vortices: dynamics, pinning, and hysteresis. SIAM J. Math. Anal.28 (1997) 1265–1293.
- T.C. Lin, The stability of the radial solution to the Ginzburg-Landau equation. Comm. Partial Differential Equations22 (1997) 619–632.
- T.C. Lin, Spectrum of the linearized operator for the Ginzburg-Landau equation. Electron. J. Differential Equations42 (2000), 25 (electronic).
- P. Mironescu, On the stability of radial solutions of the Ginzburg-Landau equation. J. Funct. Anal.130 (1995) 334–344.
- P. Mironescu, Les minimiseurs locaux pour l'équation de Ginzburg-Landau sont à symétrie radiale. C. R. Acad. Sci. Paris Sér. I Math.323 (1996) 593–598.
- M. Mu, Y. Deng and C.-C. Chou, Numerical methods for simulating Ginzburg-Landau vortices. SIAM J. Sci. Comput.19 (1998) 1333–1339.
- J.C. Neu, Vortices in complex scalar fields. Phys. D43 (1990) 385–406.
- F. Pacard and T. Riviere, Linear and nonlinear aspects of vortices. The Ginzburg-Landau model. Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston, MA (2000).
- V. Thomée, Galerkin finite element methods for parabolic problems. Springer Series in Computational Mathematics, Springer-Verlag, Berlin (1997).
- M.F. Wheeler, A priori error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal.10 (1973) 723–759.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.