Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices

Sören Bartels

ESAIM: Mathematical Modelling and Numerical Analysis (2010)

  • Volume: 39, Issue: 5, page 863-882
  • ISSN: 0764-583X

Abstract

top
This article discusses the numerical approximation of time dependent Ginzburg-Landau equations. Optimal error estimates which are robust with respect to a large Ginzburg-Landau parameter are established for a semi-discrete in time and a fully discrete approximation scheme. The proofs rely on an asymptotic expansion of the exact solution and a stability result for degree-one Ginzburg-Landau vortices. The error bounds prove that degree-one vortices can be approximated robustly while unstable higher degree vortices are critical.

How to cite

top

Bartels, Sören. "Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices." ESAIM: Mathematical Modelling and Numerical Analysis 39.5 (2010): 863-882. <http://eudml.org/doc/194291>.

@article{Bartels2010,
abstract = { This article discusses the numerical approximation of time dependent Ginzburg-Landau equations. Optimal error estimates which are robust with respect to a large Ginzburg-Landau parameter are established for a semi-discrete in time and a fully discrete approximation scheme. The proofs rely on an asymptotic expansion of the exact solution and a stability result for degree-one Ginzburg-Landau vortices. The error bounds prove that degree-one vortices can be approximated robustly while unstable higher degree vortices are critical. },
author = {Bartels, Sören},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Ginzburg-Landau equations; numerical approximation; error analysis; spectral estimate; finite element method.; error analysis},
language = {eng},
month = {3},
number = {5},
pages = {863-882},
publisher = {EDP Sciences},
title = {Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices},
url = {http://eudml.org/doc/194291},
volume = {39},
year = {2010},
}

TY - JOUR
AU - Bartels, Sören
TI - Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 39
IS - 5
SP - 863
EP - 882
AB - This article discusses the numerical approximation of time dependent Ginzburg-Landau equations. Optimal error estimates which are robust with respect to a large Ginzburg-Landau parameter are established for a semi-discrete in time and a fully discrete approximation scheme. The proofs rely on an asymptotic expansion of the exact solution and a stability result for degree-one Ginzburg-Landau vortices. The error bounds prove that degree-one vortices can be approximated robustly while unstable higher degree vortices are critical.
LA - eng
KW - Ginzburg-Landau equations; numerical approximation; error analysis; spectral estimate; finite element method.; error analysis
UR - http://eudml.org/doc/194291
ER -

References

top
  1. H.W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations. Math. Z.183 (1983), 311–341.  
  2. S. Bartels, A posteriori error analysis for Ginzburg-Landau type equations. In preparation (2004).  
  3. A. Beaulieu, Some remarks on the linearized operator about the radial solution for the Ginzburg-Landau equation. Nonlinear Anal.54 (2003) 1079–1119.  
  4. F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau vortices. Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston, MA (1994).  
  5. S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Texts in Applied Mathematics, Springer-Verlag, New York (2002).  
  6. X. Chen, Spectrum for the Allen-Cahn, Cahn-Hilliard, and phase-field equations for generic interfaces. Comm. Partial Differential Equations19 (1994) 1371–1395.  
  7. Z. Chen and K.-H. Hoffmann, Numerical studies of a non-stationary Ginzburg-Landau model for superconductivity. Adv. Math. Sci. Appl.5 (1995) 363–389.  
  8. X. Chen, C.M. Elliott and T. Qi, Shooting method for vortex solutions of a complex-valued Ginzburg-Landau equation. Proc. Roy. Soc. Edinburgh Sect. A124 (1994) 1075–1088.  
  9. P. de Mottoni and M. Schatzman, Geometrical evolution of developed interfaces. Trans. Amer. Math. Soc.347 (1995) 1533–1589.  
  10. S. Ding and Z. Liu, Hölder convergence of Ginzburg-Landau approximations to the harmonic map heat flow. Nonlinear Anal.46 (2001) 807–816.  
  11. Q. Du, M. Gunzburger and J. Peterson, Analysis and approximation of the Ginzburg-Landau model of superconductivity. SIAM Rev.34 (1992), 54–81  
  12. Q. Du, M. Gunzburger and J. Peterson, Finite element approximation of a periodic Ginzburg-Landau model for type- II superconductors. Numer. Math.64 (1993) 85–114.  
  13. W. E, Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity. Phys. D77 (1994) 383–404.  
  14. L.C. Evans, Partial differential equations. Graduate Studies in Mathematics, American Mathematical Society, Providence, RI (1998).  
  15. X. Feng and A. Prohl, Numerical analysis of the Cahn-Hilliard equation and approximation of the Hele-Shaw problem. Interfaces Free Bound.7 (2005) 1–28.  
  16. X. Feng and A. Prohl, Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows. Numer. Math.94 (2003) 33–65.  
  17. X. Feng and A. Prohl, Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits. Math. Comp.73 (2004) 541-567.  
  18. V. Ginzburg and L. Landau, On the theory of superconductivity. Zh. Èksper. Teoret. Fiz.20 (1950) 1064–1082, in Men of Physics, L.D. Landau, D. ter Haar, Eds., Pergamon, Oxford (1965) 138–167.  
  19. R.-M. Hervé and M. Hervé, Étude qualitative des solutions réelles d'une équation différentielle liée à l'équation de Ginzburg-Landau. Ann. Inst. H. Poincaré Anal. Non Linéaire11 (1994) 427–440.  
  20. K.-H. Hoffmann, J. Zou, Finite element approximations of Landau-Ginzburg's equation model for structural phase transitions in shape memory alloys. RAIRO Modél. Math. Anal. Numér.29 (1995) 629–655.  
  21. A. Jaffe and C. Taubes, Vortices and monopoles. Progress in Physics, Birkhäuser Boston, Inc., Boston, MA (1994).  
  22. D. Kessler, R.H. Nochetto and A. Schmidt, A posteriori error control for the Allen-Cahn problem: circumventing Gronwall's inequality. Preprint (2003).  
  23. E.H. Lieb and M. Loss, Symmetry of the Ginzburg-Landau minimizer in a disc. Math. Res. Lett.1 (1994) 701–715.  
  24. F.H. Lin, Complex Ginzburg-Landau equations and dynamics of vortices, filaments, and codimension-2 submanifolds. Comm. Pure Appl. Math.51 (1998) 385–441.  
  25. F.H. Lin, Some dynamical properties of Ginzburg-Landau vortices. Comm. Pure Appl. Math.49 (1996) 323–359.  
  26. F.H. Lin, The dynamical law of Ginzburg-Landau vortices. Proc. of the Conference on Nonlinear Evolution Equations and Infinite-dimensional Dynamical Systems (Shanghai, 1995), World Sci. Publishing, River Edge, NJ (1997) 101–110.  
  27. F.H. Lin and Q. Du, Ginzburg-Landau vortices: dynamics, pinning, and hysteresis. SIAM J. Math. Anal.28 (1997) 1265–1293.  
  28. T.C. Lin, The stability of the radial solution to the Ginzburg-Landau equation. Comm. Partial Differential Equations22 (1997) 619–632.  
  29. T.C. Lin, Spectrum of the linearized operator for the Ginzburg-Landau equation. Electron. J. Differential Equations42 (2000), 25 (electronic).  
  30. P. Mironescu, On the stability of radial solutions of the Ginzburg-Landau equation. J. Funct. Anal.130 (1995) 334–344.  
  31. P. Mironescu, Les minimiseurs locaux pour l'équation de Ginzburg-Landau sont à symétrie radiale. C. R. Acad. Sci. Paris Sér. I Math.323 (1996) 593–598.  
  32. M. Mu, Y. Deng and C.-C. Chou, Numerical methods for simulating Ginzburg-Landau vortices. SIAM J. Sci. Comput.19 (1998) 1333–1339.  
  33. J.C. Neu, Vortices in complex scalar fields. Phys. D43 (1990) 385–406.  
  34. F. Pacard and T. Riviere, Linear and nonlinear aspects of vortices. The Ginzburg-Landau model. Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston, MA (2000).  
  35. V. Thomée, Galerkin finite element methods for parabolic problems. Springer Series in Computational Mathematics, Springer-Verlag, Berlin (1997).  
  36. M.F. Wheeler, A priori L 2 error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal.10 (1973) 723–759.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.