# Exponential convergence to equilibrium via Lyapounov functionals for reaction-diffusion equations arising from non reversible chemical kinetics

Marzia Bisi; Laurent Desvillettes; Giampiero Spiga

ESAIM: Mathematical Modelling and Numerical Analysis (2008)

- Volume: 43, Issue: 1, page 151-172
- ISSN: 0764-583X

## Access Full Article

top## Abstract

top## How to cite

topBisi, Marzia, Desvillettes, Laurent, and Spiga, Giampiero. "Exponential convergence to equilibrium via Lyapounov functionals for reaction-diffusion equations arising from non reversible chemical kinetics." ESAIM: Mathematical Modelling and Numerical Analysis 43.1 (2008): 151-172. <http://eudml.org/doc/194442>.

@article{Bisi2008,

abstract = {
We show that the entropy method, that has been used successfully in order
to prove exponential convergence towards equilibrium with explicit constants in many contexts,
among which reaction-diffusion systems coming out of reversible chemistry, can also be used
when one considers a reaction-diffusion system corresponding to an irreversible mechanism of
dissociation/recombination, for which no natural entropy is available.
},

author = {Bisi, Marzia, Desvillettes, Laurent, Spiga, Giampiero},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis},

keywords = {Entropy methods; Lyapounov functionals; reaction-diffusion equations.; entropy methods; reaction-diffusion equations},

language = {eng},

month = {12},

number = {1},

pages = {151-172},

publisher = {EDP Sciences},

title = {Exponential convergence to equilibrium via Lyapounov functionals for reaction-diffusion equations arising from non reversible chemical kinetics},

url = {http://eudml.org/doc/194442},

volume = {43},

year = {2008},

}

TY - JOUR

AU - Bisi, Marzia

AU - Desvillettes, Laurent

AU - Spiga, Giampiero

TI - Exponential convergence to equilibrium via Lyapounov functionals for reaction-diffusion equations arising from non reversible chemical kinetics

JO - ESAIM: Mathematical Modelling and Numerical Analysis

DA - 2008/12//

PB - EDP Sciences

VL - 43

IS - 1

SP - 151

EP - 172

AB -
We show that the entropy method, that has been used successfully in order
to prove exponential convergence towards equilibrium with explicit constants in many contexts,
among which reaction-diffusion systems coming out of reversible chemistry, can also be used
when one considers a reaction-diffusion system corresponding to an irreversible mechanism of
dissociation/recombination, for which no natural entropy is available.

LA - eng

KW - Entropy methods; Lyapounov functionals; reaction-diffusion equations.; entropy methods; reaction-diffusion equations

UR - http://eudml.org/doc/194442

ER -

## References

top- A. Arnold, J.A. Carrillo, L. Desvillettes, J. Dolbeault, A. Jungel, C. Lederman, P.A. Markowich, G. Toscani and C. Villani, Entropies and equilibria of many-particle systems: An essay on recent research. Monat. Mathematik142 (2004) 35–43. Zbl1063.35109
- M. Bisi and L. Desvillettes, From reactive Boltzmann equations to reaction-diffusion systems. J. Stat. Phys.124 (2006) 881–912. Zbl1134.82323
- M. Bisi and G. Spiga, Diatomic gas diffusing in a background medium: kinetic approach and reaction-diffusion equations. Commun. Math. Sci.4 (2006) 779–798. Zbl1120.82011
- M. Bisi and G. Spiga, Dissociation and recombination of a diatomic gas in a background medium. Proceedings of 25th International Symposium on Rarefied Gas Dynamics (to appear). Zbl1120.82011
- M. Cáceres, J. Carrillo and G. Toscani, Long-time behavior for a nonlinear fourth order parabolic equation. Trans. Amer. Math. Soc.357 (2005) 1161–1175. Zbl1077.35028
- J.A. Carrillo and G. Toscani, Asymptotic L1-decay of solutions of the porous medium equation to self-similarity. Indiana University Math. J.49 (2000) 113–142. Zbl0963.35098
- M. Del Pino and J. Dolbeault, Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions. J. Math. Pures Appl.81 (2002) 847–875. Zbl1112.35310
- L. Desvillettes, About entropy methods for reaction-diffusion equations. Rivista Matematica dell'Università di Parma7 (2007) 81–123. Zbl1171.35409
- L. Desvillettes and K. Fellner, Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations. J. Math. Anal. Appl.319 (2006) 157–176. Zbl1096.35018
- L. Desvillettes and K. Fellner, Entropy methods for reaction-diffusion systems: Degenerate diffusion. Discrete Contin. Dyn. Syst.Supplement (2007) 304–312. Zbl1163.35322
- L. Desvillettes and K. Fellner, Entropy methods for reaction-diffusion equations: slowly growing a-priori bounds. Revista Mat. Iberoamericana (to appear). Zbl1171.35330
- L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. II. H-theorem and applications. Comm. Partial Differ. Equ.25 (2000) 261–298. Zbl0951.35130
- V. Giovangigli, Multicomponent Flow Modeling. Birkhäuser, Boston (1999). Zbl0956.76003
- M. Groppi, A. Rossani and G. Spiga, Kinetic theory of a diatomic gas with reactions of dissociation and recombination through a transition state. J. Phys. A33 (2000) 8819–8833. Zbl0970.82041
- M. Kirane, On stabilization of solutions of the system of parabolic differential equations describing the kinetics of an auto-catalytic reversible chemical reaction. Bull. Institute Math. Academia Sinica18 (1990) 369–377. Zbl0731.35056
- O.A. Ladyzenskaya, V.A. Solonnikov and N.N. Uralceva, Linear and Quasi-linear Equations of Parabolic Type, Trans. Math. Monographs23. American Mathematical Society, Providence (1968).
- K. Masuda, On the global existence and asymptotic behavior of solution of reaction-diffusion equations. Hokkaido Math. J.12 (1983) 360–370. Zbl0529.35037
- J.A. McLennan, Boltzmann equation for a dissociating gas. J. Stat. Phys.57 (1989) 887–905.
- Y. Sone, Kinetic Theory and Fluid Dynamics. Birkhäuser, Boston (2002). Zbl1021.76002
- G. Toscani and C. Villani, Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation. Comm. Math. Phys.203 (1999) 667–706. Zbl0944.35066
- Y. Yoshizawa, Wave structures of a chemically reacting gas by the kinetic theory of gases, in Rarefied Gas Dynamics, J.L. Potter Ed., A.I.A.A., New York (1977) 501–517.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.