Convergence analysis of a locally stabilized collocated finite volume scheme for incompressible flows
Robert Eymard; Raphaèle Herbin; Jean-Claude Latché; Bruno Piar
ESAIM: Mathematical Modelling and Numerical Analysis (2009)
- Volume: 43, Issue: 5, page 889-927
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- F. Archambeau, N. Méchitoua and M. Sakiz, Code saturne: A finite volume code for turbulent flows. International Journal of Finite Volumes1 (2004), . URIhttp://www.latp.univ-mrs.fr/IJFV/
- M. Bern, D. Eppstein and J. Gilbert, Provably good mesh generation. J. Comput. System Sci.48 (1994) 384–409.
- F. Boyer and P. Fabrie, Eléments d'analyse pour l'étude de quelques modèles d'écoulements de fluides visqueux incompressibles, Mathématiques et Applications52. Springer-Verlag (2006).
- F. Brezzi and M. Fortin, A minimal stabilisation procedure for mixed finite element methods. Numer. Math.89 (2001) 457–491.
- E. Chénier, R. Eymard and O. Touazi, Numerical results using a colocated finite-volume scheme on unstructured grids for incompressible fluid flows. Numer. Heat Transf. Part B: Fundam.49 (2006) 259–276.
- E. Chénier, R. Eymard, R. Herbin and O. Touazi, Collocated finite volume schemes for the simulation of natural convective flows on unstructured meshes. Int. J. Num. Methods Fluids56 (2008) 2045–2068.
- Y. Coudière, T. Gallouët and R. Herbin, Discrete Sobolev inequalities and LP error estimates for finite volume solutions of convection diffusion equations. ESAIM: M2AN35 (2001) 767–778.
- K. Deimling, Nonlinear functional analysis. Springer-Verlag (1985).
- R. Eymard and T. Gallouët, H-convergence and numerical schemes for elliptic equations. SIAM J. Numer. Anal.41 (2003) 539–562.
- R. Eymard and R. Herbin, A new colocated finite volume scheme for the incompressible Navier-Stokes equations on general non-matching grids. C. R. Acad. Sci., Sér. I Math.344 (2007) 659–662.
- R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, Handbook of Numerical AnalysisVII. North Holland (2000) 713–1020.
- R. Eymard, T. Gallouët and R. Herbin, A finite volume scheme for anisotropic diffusion problems. C. R. Acad. Sci., Sér. I Math.339 (2004) 299–302.
- R. Eymard, R. Herbin and J.C. Latché, On a stabilized colocated finite volume scheme for the Stokes problem. ESAIM: M2AN40 (2006) 501–528.
- R. Eymard, T. Gallouët, R. Herbin and J.-C. Latché, Analysis tools for finite volume schemes. Acta Mathematica Universitatis Comenianae76 (2007) 111–136.
- R. Eymard, R. Herbin and J.C. Latché, Convergence analysis of a colocated finite volume scheme for the incompressible Navier-Stokes equations on general 2D or 3D meshes. SIAM J. Numer. Anal.45 (2007) 1–36.
- R. Eymard, R. Herbin, J.C. Latché and B. Piar, On the stability of colocated clustered finite volume simplicial discretizations for the 2D Stokes problem. Calcolo44 (2007) 219–234.
- L.P. Franca and R. Stenberg, Error analysis of some Galerkin Least Squares methods for the elasticity equations. SIAM J. Numer. Anal.28 (1991) 1680–1697.
- T. Gallouët, R. Herbin and M.H. Vignal, Error estimates for the approximate finite volume solution of convection diffusion equations with general boundary conditions. SIAM J. Numer. Anal.37 (2000) 1935–1972.
- V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations – Theory and Algorithms, Springer Series in Computational Mathematics5. Springer-Verlag (1986).
- J. Nečas, Équations aux dérivées partielles. Presses de l'Université de Montréal (1965).
- L.E. Payne and H.F. Weinberger, An optimal Poincaré-inequality for convex domains. Arch. Rational Mech. Anal.5 (1960) 286–292.
- B. Piar, PELICANS : Un outil d'implémentation de solveurs d'équations aux dérivées partielles. Note Technique 2004/33, IRSN/DPAM/SEMIC (2004).
- R. Temam, Navier-Stokes Equations, Studies in mathematics and its applications. North-Holland (1977).
- R. Verfürth, Error estimates for some quasi-interpolation operators. ESAIM: M2AN33 (1999) 695–713.