Discrete Sobolev inequalities and Lp error estimates for finite volume solutions of convection diffusion equations

Yves Coudière; Thierry Gallouët; Raphaèle Herbin

ESAIM: Mathematical Modelling and Numerical Analysis (2010)

  • Volume: 35, Issue: 4, page 767-778
  • ISSN: 0764-583X

Abstract

top
The topic of this work is to obtain discrete Sobolev inequalities for piecewise constant functions, and to deduce Lp error estimates on the approximate solutions of convection diffusion equations by finite volume schemes.

How to cite

top

Coudière, Yves, Gallouët, Thierry, and Herbin, Raphaèle. "Discrete Sobolev inequalities and Lp error estimates for finite volume solutions of convection diffusion equations." ESAIM: Mathematical Modelling and Numerical Analysis 35.4 (2010): 767-778. <http://eudml.org/doc/197423>.

@article{Coudière2010,
abstract = { The topic of this work is to obtain discrete Sobolev inequalities for piecewise constant functions, and to deduce Lp error estimates on the approximate solutions of convection diffusion equations by finite volume schemes. },
author = {Coudière, Yves, Gallouët, Thierry, Herbin, Raphaèle},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Finite volume methods; Lp error estimates; unstructured meshes; convection-diffusion equations.; finite volume methods; error estimates; convection-diffusion equations; convergence; discrete Sobolev inequalities},
language = {eng},
month = {3},
number = {4},
pages = {767-778},
publisher = {EDP Sciences},
title = {Discrete Sobolev inequalities and Lp error estimates for finite volume solutions of convection diffusion equations},
url = {http://eudml.org/doc/197423},
volume = {35},
year = {2010},
}

TY - JOUR
AU - Coudière, Yves
AU - Gallouët, Thierry
AU - Herbin, Raphaèle
TI - Discrete Sobolev inequalities and Lp error estimates for finite volume solutions of convection diffusion equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 35
IS - 4
SP - 767
EP - 778
AB - The topic of this work is to obtain discrete Sobolev inequalities for piecewise constant functions, and to deduce Lp error estimates on the approximate solutions of convection diffusion equations by finite volume schemes.
LA - eng
KW - Finite volume methods; Lp error estimates; unstructured meshes; convection-diffusion equations.; finite volume methods; error estimates; convection-diffusion equations; convergence; discrete Sobolev inequalities
UR - http://eudml.org/doc/197423
ER -

References

top
  1. R.E. Bank and D.J. Rose, Some error estimates for the box method. SIAM J. Numer. Anal.24 (1987) 777-787.  
  2. R. Belmouhoub, Modélisation tridimensionnelle de la genèse des bassins sédimentaires. Thesis, École Nationale Supérieure des Mines de Paris, France (1996).  
  3. Z. Cai, On the finite volume element method. Numer. Math.58 (1991) 713-735.  
  4. Z. Cai, Mandel J. and S. Mc Cormick, The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal.28 (1991) 392-402.  
  5. W.J. Coirier and K.G. Powell, A Cartesian, cell-based approach for adaptative-refined solutions of the Euler and Navier-Stokes equations. AIAA J.0566 (1995).  
  6. M. Dauge, Elliptic boundary value problems in corner domains. Lecture Notes in Math.1341 Springer-Verlag, Berlin (1988).  
  7. Y. Coudière and P. Villedieu, A finite volume scheme for the linear convection-diffusion equation on locally refined meshes, in7-th international colloquium on numerical analysis, Plovdiv, Bulgaria (1998).  
  8. Y. Coudière, J.P. Vila and P. Villedieu, Convergence of a finite volume scheme for a diffusion problem, in Finite volumes for complex applications, problems and perspectives, F. Benkhaldoun and R. Vilsmeier Eds., Hermès, Paris (1996) 161-168.  
  9. Y. Coudière, J.-P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two dimensional convection diffusion problem. ESAIM: M2AN33 (1999) 493-516.  
  10. Y. Coudière and P. Villedieu, Convergence of a finite volume scheme for a two dimensional diffusion convection equation on locally refined meshes. ESAIM: M2AN34 (2000) 1109-1295.  
  11. R. Eymard, T. Gallouët and R. Herbin, Convergence of finite volume schemes for semilinear convection diffusion equations. Numerische Mathematik.82 (1999) 91-116.  
  12. R. Eymard and T. Gallouët, Convergence d'un schéma de type éléments finis-volumes finis pour un système couplé elliptique-hyperbolique. RAIRO Modél. Math. Anal. Numér.27 (1993) 843-861.  
  13. R. Eymard, T. Gallouët and R. Herbin, The finite volume method, in Handbook of numerical analysis, P.G. Ciarlet and J.L. Lions, Eds., Elsevier Science BV, Amsterdam (2000) 715-1022.  
  14. I. Faille, A control volume method to solve an elliptic equation on a 2D irregular meshing. Comput. Methods Appl. Mech. Engrg.100 (1992) 275-290.  
  15. P.A. Forsyth, A control volume finite element approach to NAPL groundwater contamination. SIAM J. Sci. Stat. Comput.12 (1991) 1029-1057.  
  16. P.A. Forsyth and P.H. Sammon, Quadratic convergence for cell-centered grids. Appl. Numer. Math.4 (1988) 377-394.  
  17. T. Gallouët, R. Herbin and M.H. Vignal, Error estimate for the approximate finite volume solutions of convection diffusion equations with Dirichlet, Neumann or Fourier boundary conditions. SIAM J. Numer. Anal.37 (2000) 1035-1072.  
  18. B. Heinrich, Finite difference methods on irregular networks. A generalized approach to second order elliptic problems. Internat. Ser. Numer. Math.82, Birkhäuser-Verlag, Stuttgart (1987).  
  19. R. Herbin, An error estimate for a finite volume scheme for a diffusion-convection problem on a triangular mesh. Numer. Methods. Partial Differ. Equations11 (1995) 165-173.  
  20. R. Herbin, Finite volume methods for diffusion convection equations on general meshes, in Finite volumes for complex applications, problems and perspectives, F. Benkhaldoun and R. Vilsmeier, Eds., Hermès, Paris (1996) 153-160.  
  21. F. Jacon and D. Knight, A Navier-Stokes algorithm for turbulent flows using an unstructured grid and flux difference splitting. AIAA J.2292 (1994).  
  22. R.D. Lazarov and I.D. Mishev, Finite volume methods for reaction diffusion problems, in Finite volumes for complex applications, problems and perspectives, F. Benkhaldoun and R. Vilsmeier, Eds., Hermès, Paris (1996) 233-240 .  
  23. R.D. Lazarov, I.D. Mishev and P.S. Vassilevski, Finite volume methods for convection-diffusion problems. SIAM J. Numer. Anal.33 (1996) 31-55.  
  24. T.A. Manteufel and A.B. White, The numerical solution of second order boundary value problem on non uniform meshes. Math. Comput.47 (1986) 511-536.  
  25. K.W. Morton and E. Süli, Finite volume methods and their analysis. IMA J. Numer. Anal.11 (1991) 241-260.  
  26. D. Trujillo, Couplage espace-temps de schémas numériques en simulation de réservoir. Ph.D. Thesis, University of Pau, France (1994).  
  27. P.S. Vassileski, S.I. Petrova and R.D. Lazarov, Finite difference schemes on triangular cell-centered grids with local refinement. SIAM J. Sci. Statist. Comput.13 (1992) 1287-1313.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.