Local existence and estimations for a semilinear wave equation in two dimension space
Bollettino dell'Unione Matematica Italiana (2004)
- Volume: 7-B, Issue: 1, page 1-21
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topBaraket, Amel Atallah. "Local existence and estimations for a semilinear wave equation in two dimension space." Bollettino dell'Unione Matematica Italiana 7-B.1 (2004): 1-21. <http://eudml.org/doc/194701>.
@article{Baraket2004,
abstract = {In this paper we prove a local existence theorem for a Cauchy problem associated to a semi linear wave equation with an exponential nonlinearity in two dimension space. In this problem, the first Cauchy data is equal to zero, the second is in $L^\{2\}(\mathbb\{R\}^\{2\})$, radially symmetric and compactly supported. To prove this theorem, we first show a Moser-Trudinger type inequality for the linear problem and then we use a fixed point method to achieve the proof of the result.},
author = {Baraket, Amel Atallah},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {Cauchy problem},
language = {eng},
month = {2},
number = {1},
pages = {1-21},
publisher = {Unione Matematica Italiana},
title = {Local existence and estimations for a semilinear wave equation in two dimension space},
url = {http://eudml.org/doc/194701},
volume = {7-B},
year = {2004},
}
TY - JOUR
AU - Baraket, Amel Atallah
TI - Local existence and estimations for a semilinear wave equation in two dimension space
JO - Bollettino dell'Unione Matematica Italiana
DA - 2004/2//
PB - Unione Matematica Italiana
VL - 7-B
IS - 1
SP - 1
EP - 21
AB - In this paper we prove a local existence theorem for a Cauchy problem associated to a semi linear wave equation with an exponential nonlinearity in two dimension space. In this problem, the first Cauchy data is equal to zero, the second is in $L^{2}(\mathbb{R}^{2})$, radially symmetric and compactly supported. To prove this theorem, we first show a Moser-Trudinger type inequality for the linear problem and then we use a fixed point method to achieve the proof of the result.
LA - eng
KW - Cauchy problem
UR - http://eudml.org/doc/194701
ER -
References
top- GINIBRE, J.- SOFFER, H.- VÉLO, G., The global Cauchy problem for the critical nonLinear wave equation, J. Funct. Anal., 110 (1992), 96-130. Zbl0813.35054MR1190421
- GINIBRE, J.- VÉLO, G., The global Cauchy problem for the nonlinear Klein-Gordon equations, Math. Z, 189 (1985), 487-505. Zbl0549.35108MR786279
- GINIBRE, J.- VÉLO, G., Generalized Strichartz inequalities for the wave equation, J. Funct. Anal., 133 (1995), 50-68. Zbl0849.35064MR1351643
- LIONS, P. L., The concentration compactness principle in the calculus of variations the limit case, Part I. Rev. Mat. Iberoamericana, 1 (1985), 145-201. Zbl0704.49005MR834360
- MOSER, J., A sharp form of an inequality of N. Trudinger, Ind. Univ. Math. J., 20 (1971), 1077-1092. Zbl0213.13001MR301504
- NAKUMURA, M.- OZAWA, T., Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth, Math. Z., 231, No. 3 (1999), 479-487. Zbl0931.35107MR1704989
- SHATAH, J.- STRUWE, M., Regularity results for nonlinear wave equations, Ann. Math., 138 (1993), 503-518. Zbl0836.35096MR1247991
- STRAUSS, W., On weak solutions of semi-linear hyperbolic equations, Anais Acad. Brasil Cienc., 42 (1970), 645-651. Zbl0217.13104MR306715
- STRUWE, M., Semilinear wave equations, Bull. Amer. Math. Soc., 26 (1992), 53-86. Zbl0767.35045MR1093058
- TAYLOR, M. E., Partial differential equations I. Basic Theory, Applied. Math. Sciences115. Springer. Zbl0869.35002MR1395148
- TRUDINGER, N. S., On imbeddings into Orlicz spaces and some applications, J. Math. Mechanics, 17, 5 (1967), 473-484. Zbl0163.36402MR216286
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.