Existence globale de solutions pour une équation des ondes semi-linéaire en deux dimensions d’espace
- [1] Faculté des Sciences de Tunis, Département de Mathématiques,Campus universitaire 1060, Tunis, TUNISIA
Séminaire Équations aux dérivées partielles (2004-2005)
- page 1-21
Access Full Article
topHow to cite
topMadjoub, Mohamed. "Existence globale de solutions pour une équation des ondes semi-linéaire en deux dimensions d’espace." Séminaire Équations aux dérivées partielles (2004-2005): 1-21. <http://eudml.org/doc/11101>.
@article{Madjoub2004-2005,
affiliation = {Faculté des Sciences de Tunis, Département de Mathématiques,Campus universitaire 1060, Tunis, TUNISIA},
author = {Madjoub, Mohamed},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-21},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Existence globale de solutions pour une équation des ondes semi-linéaire en deux dimensions d’espace},
url = {http://eudml.org/doc/11101},
year = {2004-2005},
}
TY - JOUR
AU - Madjoub, Mohamed
TI - Existence globale de solutions pour une équation des ondes semi-linéaire en deux dimensions d’espace
JO - Séminaire Équations aux dérivées partielles
PY - 2004-2005
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 21
LA - fre
UR - http://eudml.org/doc/11101
ER -
References
top- A. Atallah Baraket : Local existence and estimations for a semilinear wave equation in two dimension space, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat 8, 1, 1-21, 2004. Zbl1117.35046MR2044259
- S. Adachi and K. Tanaka : Trudinger type inequalities in and their best exponents, Proc. Amer. Math. Society, V. 128, N. 7, pp. 2051-2057, 1999. Zbl0980.46020MR1646323
- H. Bahouri and P. Gérard : High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math. 121, pp. 131-175, 1999. Zbl0919.35089MR1705001
- H. Bahouri and J. Shatah : Global estimate for the critical semilinear wave equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, Vol. 15, no 6, pp. 783-789, 1998. Zbl0924.35084MR1650958
- N. Burq, P. Gérard and N. Tvzetkov : An instability property of the nonlinear Schrödinger equation on , Math. Res. Lett. 9, no 2-3, pp. 323-335, 2002. Zbl1003.35113MR1909648
- M. Christ, J. Colliander and T. Tao : Ill-posedness for nonlinear Schrödinger and wave equations, Preprint.
- P. Gérard : Oscillations and concentration effects in semilinear dispersive wave equations, J. Funct. Anal. 133, pp. 50-68, 1996. Zbl0868.35075MR1414374
- J. Ginibre : Scattering theory in the energy space for a class of nonlinear wave equation, Advanced Studies in Pure Mathematics 23, 83-103, 1994. Zbl0827.35077MR1275396
- J. Ginibre, A. Soffer and G. Velo : The global Cauchy problem for the critical nonlinear wave equation, J. Funct. Anal. 110, 96-130, 1992. Zbl0813.35054MR1190421
- J. Ginibre and G. Velo : The global Cauchy problem for nonlinear Klein-Gordon equation, Math.Z , 189, pp. 487-505, 1985. Zbl0549.35108MR786279
- J. Ginibre and G. Velo : Scattering theory in the energie space for a class of nonlinear wave equations, Comm. Math. Phys.J. Functional Analysis , 123, pp. 535-573, 1989. Zbl0698.35112MR1006294
- J. Ginibre and G. Velo : Generalized Strichartz inequalities for the wave equations, J. Functional Analysis , 133, pp. 50-68, 1995. Zbl0849.35064MR1351643
- M. Grillakis : Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity, Annal. of math. , 132, pp. 485-509, 1990. Zbl0736.35067MR1078267
- M. Grillakis : Regularity for the wave equation with a critical nonlinearity, Comm. Pure Appl. Math , XLVI, pp. 749-774, 1992. Zbl0785.35065MR1162370
- S. Ibrahim, M. Majdoub and N. Masmoudi : Global solutions for a semilinear 2D Klein-Gordon equation with exponential type nonlinearity, Communications on Pure and Applied Mathematics, à paraître. Zbl1117.35049
- S. Ibrahim, M. Majdoub and N. Masmoudi : Double logarithmic inequality with a sharp constant, Proceedings of the American Mathematical Society, à paraître. Zbl1130.46018
- S. Ibrahim et M. Majdoub : Solutions globales de l’équation des ondes semi-linéaire critique à coefficients variables, Bull. Soc. math. France 131 (1), pp. 1-21, 2003. Zbl1024.35077
- L. V. Kapitanski : The Cauchy problem for a semilinear wave equation, Zap. Nauchn. Sem. Leningrad Otdel. Math. Inst. Steklov(LOMI), 181-182, pp. 24-64 and 38-85, 1990. Zbl0733.35109
- L. V. Kapitanski : Some generalizations of the Strichartz-Brenner inequality, Leningrad Math. Journ., 1, # 10, pp. 693-726, 1990. Zbl0732.35118MR1015129
- L. V. Kapitanski : The Cauchy problem for a semilinear wave equation II, J. of Soviet Math., 62, Série I, pp. 2746-2777, 1992. Zbl0783.35089MR1064097
- L. V. Kapitanski : Global and unique weak solutions of nonlinear wave equations, Math. Res. Lett., 1, pp. 211-223, 1994. Zbl0841.35067MR1266760
- D. Kinderlehrer and G. Stampacchia : An introduction to variational inequalities and their applications, Academic Press, 1980. Zbl0457.35001MR567696
- G. Lebeau : Nonlinear optics and supercritical wave equation, Bull. Soc. R. Sci. Liège 70, No.4-6, 267-306, 2001. Zbl1034.35137MR1904059
- N. Masmoudi and F. Planchon : Uniquenes for the quintic semilinear wave equation, Preprint.
- J. Moser : Asharp form of an inequality of N. Trudinger, Ind. Univ. Math. J. 20, 1077-1092, 1971. Zbl0213.13001MR301504
- M. Nakamura and T. Ozawa : Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth, Math. Z. 231, 479-487, 1999. Zbl0931.35107MR1704989
- M. Nakamura and T. Ozawa : The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order, Discrete and Continuous Dynamical Systems, V. 5, N. 1, 215-231, 1999. Zbl0958.35011MR1664497
- H. Pecher : Nonlinear small data scattering for the wave and Klein-Gordon equation, Math. Z. 185, 261-270, 1984. Zbl0538.35063MR731347
- H. Pecher : Local solutions of semilinear wave equations in , Mathematical Methods in the Applied Sciences 19, 145-170, 1996. Zbl0845.35069MR1368792
- B. Ruf : A sharp Trudinger-Moser type inequality for unbounded domains in , Preprint. Zbl1119.46033MR2109256
- J. Shatah and M. Struwe : Regularity results for nonlinear wave equations, Ann.of Math., 2, no 138 pp. 503-518, 1993. Zbl0836.35096MR1247991
- J. Shatah and M. Struwe : Well-Posedness in the energy space for semilinear wave equation with critical growth, IMRN, 7, pp. 303-309, 1994. Zbl0830.35086MR1283026
- R. Strichartz : A priori estimates for the wave equation and some applications, J. Funct. Analysis, 5, pp. 218-235, 1970. Zbl0189.40701MR257581
- R. Strichartz : Restrictions of Fourier transform to quadratic surfaces and decay of solutions of wave equations, Duke Math. Journ., 44, pp. 705-714, 1977. Zbl0372.35001MR512086
- M Struwe : Semilinear wave equations, Bull. Amer. Math. Soc., N.S, no 26, pp. 53-85, 1992. Zbl0767.35045
- C. Zuily : Solutions en grand temps d’équations d’ondes non linéaire , Séminaire Bourbaki, 779, 1993-1994. Zbl0830.35088
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.