Existence globale de solutions pour une équation des ondes semi-linéaire en deux dimensions d’espace

Mohamed Madjoub[1]

  • [1] Faculté des Sciences de Tunis, Département de Mathématiques,Campus universitaire 1060, Tunis, TUNISIA

Séminaire Équations aux dérivées partielles (2004-2005)

  • page 1-21

How to cite

top

Madjoub, Mohamed. "Existence globale de solutions pour une équation des ondes semi-linéaire en deux dimensions d’espace." Séminaire Équations aux dérivées partielles (2004-2005): 1-21. <http://eudml.org/doc/11101>.

@article{Madjoub2004-2005,
affiliation = {Faculté des Sciences de Tunis, Département de Mathématiques,Campus universitaire 1060, Tunis, TUNISIA},
author = {Madjoub, Mohamed},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-21},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Existence globale de solutions pour une équation des ondes semi-linéaire en deux dimensions d’espace},
url = {http://eudml.org/doc/11101},
year = {2004-2005},
}

TY - JOUR
AU - Madjoub, Mohamed
TI - Existence globale de solutions pour une équation des ondes semi-linéaire en deux dimensions d’espace
JO - Séminaire Équations aux dérivées partielles
PY - 2004-2005
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 21
LA - fre
UR - http://eudml.org/doc/11101
ER -

References

top
  1. A. Atallah Baraket : Local existence and estimations for a semilinear wave equation in two dimension space, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat 8, 1, 1-21, 2004. Zbl1117.35046MR2044259
  2. S. Adachi and K. Tanaka : Trudinger type inequalities in N and their best exponents, Proc. Amer. Math. Society, V. 128, N. 7, pp. 2051-2057, 1999. Zbl0980.46020MR1646323
  3. H. Bahouri and P. Gérard : High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math. 121, pp. 131-175, 1999. Zbl0919.35089MR1705001
  4. H. Bahouri and J. Shatah : Global estimate for the critical semilinear wave equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, Vol. 15, no 6, pp. 783-789, 1998. Zbl0924.35084MR1650958
  5. N. Burq, P. Gérard and N. Tvzetkov : An instability property of the nonlinear Schrödinger equation on 𝒮 d , Math. Res. Lett. 9, no 2-3, pp. 323-335, 2002. Zbl1003.35113MR1909648
  6. M. Christ, J. Colliander and T. Tao : Ill-posedness for nonlinear Schrödinger and wave equations, Preprint. 
  7. P. Gérard : Oscillations and concentration effects in semilinear dispersive wave equations, J. Funct. Anal. 133, pp. 50-68, 1996. Zbl0868.35075MR1414374
  8. J. Ginibre : Scattering theory in the energy space for a class of nonlinear wave equation, Advanced Studies in Pure Mathematics 23, 83-103, 1994. Zbl0827.35077MR1275396
  9. J. Ginibre, A. Soffer and G. Velo : The global Cauchy problem for the critical nonlinear wave equation, J. Funct. Anal. 110, 96-130, 1992. Zbl0813.35054MR1190421
  10. J. Ginibre and G. Velo : The global Cauchy problem for nonlinear Klein-Gordon equation, Math.Z , 189, pp. 487-505, 1985. Zbl0549.35108MR786279
  11. J. Ginibre and G. Velo : Scattering theory in the energie space for a class of nonlinear wave equations, Comm. Math. Phys.J. Functional Analysis , 123, pp. 535-573, 1989. Zbl0698.35112MR1006294
  12. J. Ginibre and G. Velo : Generalized Strichartz inequalities for the wave equations, J. Functional Analysis , 133, pp. 50-68, 1995. Zbl0849.35064MR1351643
  13. M. Grillakis : Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity, Annal. of math. , 132, pp. 485-509, 1990. Zbl0736.35067MR1078267
  14. M. Grillakis : Regularity for the wave equation with a critical nonlinearity, Comm. Pure Appl. Math , XLVI, pp. 749-774, 1992. Zbl0785.35065MR1162370
  15. S. Ibrahim, M. Majdoub and N. Masmoudi : Global solutions for a semilinear 2D Klein-Gordon equation with exponential type nonlinearity, Communications on Pure and Applied Mathematics, à paraître. Zbl1117.35049
  16. S. Ibrahim, M. Majdoub and N. Masmoudi : Double logarithmic inequality with a sharp constant, Proceedings of the American Mathematical Society, à paraître. Zbl1130.46018
  17. S. Ibrahim et M. Majdoub : Solutions globales de l’équation des ondes semi-linéaire critique à coefficients variables, Bull. Soc. math. France 131 (1), pp. 1-21, 2003. Zbl1024.35077
  18. L. V. Kapitanski : The Cauchy problem for a semilinear wave equation, Zap. Nauchn. Sem. Leningrad Otdel. Math. Inst. Steklov(LOMI), 181-182, pp. 24-64 and 38-85, 1990. Zbl0733.35109
  19. L. V. Kapitanski : Some generalizations of the Strichartz-Brenner inequality, Leningrad Math. Journ., 1, # 10, pp. 693-726, 1990. Zbl0732.35118MR1015129
  20. L. V. Kapitanski : The Cauchy problem for a semilinear wave equation II, J. of Soviet Math., 62, Série I, pp. 2746-2777, 1992. Zbl0783.35089MR1064097
  21. L. V. Kapitanski : Global and unique weak solutions of nonlinear wave equations, Math. Res. Lett., 1, pp. 211-223, 1994. Zbl0841.35067MR1266760
  22. D. Kinderlehrer and G. Stampacchia : An introduction to variational inequalities and their applications, Academic Press, 1980. Zbl0457.35001MR567696
  23. G. Lebeau : Nonlinear optics and supercritical wave equation, Bull. Soc. R. Sci. Liège 70, No.4-6, 267-306, 2001. Zbl1034.35137MR1904059
  24. N. Masmoudi and F. Planchon : Uniquenes for the quintic semilinear wave equation, Preprint. 
  25. J. Moser : Asharp form of an inequality of N. Trudinger, Ind. Univ. Math. J. 20, 1077-1092, 1971. Zbl0213.13001MR301504
  26. M. Nakamura and T. Ozawa : Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth, Math. Z. 231, 479-487, 1999. Zbl0931.35107MR1704989
  27. M. Nakamura and T. Ozawa : The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order, Discrete and Continuous Dynamical Systems, V. 5, N. 1, 215-231, 1999. Zbl0958.35011MR1664497
  28. H. Pecher : Nonlinear small data scattering for the wave and Klein-Gordon equation, Math. Z. 185, 261-270, 1984. Zbl0538.35063MR731347
  29. H. Pecher : Local solutions of semilinear wave equations in H s + 1 , Mathematical Methods in the Applied Sciences 19, 145-170, 1996. Zbl0845.35069MR1368792
  30. B. Ruf : A sharp Trudinger-Moser type inequality for unbounded domains in 2 , Preprint. Zbl1119.46033MR2109256
  31. J. Shatah and M. Struwe : Regularity results for nonlinear wave equations, Ann.of Math., 2, no 138 pp. 503-518, 1993. Zbl0836.35096MR1247991
  32. J. Shatah and M. Struwe : Well-Posedness in the energy space for semilinear wave equation with critical growth, IMRN, 7, pp. 303-309, 1994. Zbl0830.35086MR1283026
  33. R. Strichartz : A priori estimates for the wave equation and some applications, J. Funct. Analysis, 5, pp. 218-235, 1970. Zbl0189.40701MR257581
  34. R. Strichartz : Restrictions of Fourier transform to quadratic surfaces and decay of solutions of wave equations, Duke Math. Journ., 44, pp. 705-714, 1977. Zbl0372.35001MR512086
  35. M  Struwe : Semilinear wave equations, Bull. Amer. Math. Soc., N.S, no 26, pp. 53-85, 1992. Zbl0767.35045
  36. C. Zuily : Solutions en grand temps d’équations d’ondes non linéaire , Séminaire Bourbaki, 779, 1993-1994. Zbl0830.35088

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.