Multibump solutions for Hamiltonian systems with fast and slow forcing
Vittorio Coti Zelati; Margherita Nolasco
Bollettino dell'Unione Matematica Italiana (1999)
- Volume: 2-B, Issue: 3, page 585-608
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topCoti Zelati, Vittorio, and Nolasco, Margherita. "Multibump solutions for Hamiltonian systems with fast and slow forcing." Bollettino dell'Unione Matematica Italiana 2-B.3 (1999): 585-608. <http://eudml.org/doc/194782>.
@article{CotiZelati1999,
author = {Coti Zelati, Vittorio, Nolasco, Margherita},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {multibump solutions; superquadratic potentials; second order Hamiltonian system; chaotic behaviour},
language = {eng},
month = {10},
number = {3},
pages = {585-608},
publisher = {Unione Matematica Italiana},
title = {Multibump solutions for Hamiltonian systems with fast and slow forcing},
url = {http://eudml.org/doc/194782},
volume = {2-B},
year = {1999},
}
TY - JOUR
AU - Coti Zelati, Vittorio
AU - Nolasco, Margherita
TI - Multibump solutions for Hamiltonian systems with fast and slow forcing
JO - Bollettino dell'Unione Matematica Italiana
DA - 1999/10//
PB - Unione Matematica Italiana
VL - 2-B
IS - 3
SP - 585
EP - 608
LA - eng
KW - multibump solutions; superquadratic potentials; second order Hamiltonian system; chaotic behaviour
UR - http://eudml.org/doc/194782
ER -
References
top- ALESSIO, F.- CALDIROLI, P.- MONTECCHIARI, P., Genericity of the multibump dynamics for almost periodic duffing-like systems, preprint, SISSA, Trieste (1997). Zbl0941.34032MR1719214
- AMBROSETTI, A.- BADIALE, M.- CINGOLANI, S., Semiclassical states of nonlinear Schrödinger equations, Arch. Rational Mech. Anal., 140 (1997), 285-300. Zbl0896.35042MR1486895
- AMBROSETTI, A.- BERTI, M., Homoclinics and complex dynamics in slowly oscillating systems, Discrete Contin. Dynam. Systems (1998). Zbl0952.34037MR1612728
- ANGENENT, S., A variational interpretation of Melnikov's function and exponentially small separatrix splitting, Symplectic Geometry (Cambridge) (J. Mierczyński, ed.), London Math. Soc. Lecture Note, no. 192, Cambridge University Press (1993), 5-35. Zbl0810.34037MR1297127
- BERTOTTI, M. L.- BOLOTIN, S. V., Homoclinic solutions of quasiperiodic Lagrangian systems, Differential Integral Equations, 8 (1995), 1733-1760. Zbl0827.34037MR1347977
- BESSI, U., Homoclinic and period-doubling bifurcations for damped systems, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 12 (1995), 1-25. Zbl0836.34044MR1320566
- CINGOLANI, S.- NOLASCO, M., Multi-peak periodic semiclassical states for a class of nonlinear Schroedinger equations, Proc. Roy. Soc. Edinburgh Sect. A (1998), to appear. Zbl0922.35158MR1664105
- COTI ZELATI, V.- EKELAND, I.- SÉRÉ, E., Solutions doublement asymptotiques de systèmes Hamiltoniens convexes, C. R. Acad. Sci. Paris Sér. I Math., 310 (1990), 631-633. Zbl0703.70020MR1065426
- COTI ZELATI, V.- MONTECCHIARI, P.- NOLASCO, M., Multibump homoclinic solutions for a class of second order, almost periodic Hamiltonian systems, NoDEA Nonlinear Differential Equations Appl., 4 (1997), 77-99. Zbl0878.34045MR1433313
- COTI ZELATI, V.- RABINOWITZ, P. H., Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), 693-727. Zbl0744.34045MR1119200
- DEL PINO, M.- FELMER, P. L., Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 4 (1996), 121-137. Zbl0844.35032MR1379196
- DELSHAMS, A.- SEARA, T. M., An asymptotic expression for the splitting of separatrices of the rapidly forced pendulum, Comm. Math. Phys., 150 (1992), 433-463. Zbl0765.70016MR1204314
- FIEDLER, B.- SCHEURLE, J., Discretization of homoclinic orbits, rapid forcing and «invisible» chaos, Memoirs of the AMS, no. 570, American Mathematical Society, Providence (1996). Zbl0923.34049MR1342018
- FLOER, A.- WEINSTEIN, A., Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69 (1986), 397-408. Zbl0613.35076MR867665
- GUI, C., Existence of multi-bump solutions for nonlinear Schrodinger equations via variational method, Comm. Partial Differential Equations, 21 (1996), 787-820. Zbl0857.35116MR1391524
- LI, Y. Y., On a singularly perturbed elliptic equation, preprint, Rutgers University (1997).
- LIONS, P.-L., The concentration-compactness principle in the calculus of variations. The locally compact case, part 1., Ann. Inst. H. Poincaré. Anal. Non Linéaire, 1 (1984), 109-145. Zbl0541.49009MR778970
- MELNIKOV, V., On the stability of the center for periodic perturbations, Trans. Moscow Math. Soc., 12 (1963), 1-57. Zbl0135.31001MR156048
- MONTECCHIARI, P.- NOLASCO, M.- TERRACINI, S., A global condition for periodic Duffing-like equations, Trans. Amer. Math. Soc., to appear. Zbl0926.37005MR1487629
- MONTECCHIARI, P.- NOLASCO, M.- TERRACINI, S., Multiplicity of homoclinics for a class of time recurrent second order Hamiltonian systems, Calc. Var. Partial Differential Equations, 5 (1997), 423-555. Zbl0886.58014MR1473307
- OH, Y., Existence of semiclassical bound states of nonlinear Schrödinger equations with potential in the class , Comm. Partial Differential Equations, 13 (1988), 1499-1519. Zbl0702.35228MR970154
- POINCARÉ, H., Les méthodes nouvelles de la mécanique céleste, Gauthier-Villars, Paris (1897-1899).
- RABINOWITZ, P. H., Multibump solutions for an almost periodically forced singular Hamiltonian system, Electron. J. Differential Equations, 1995 (1995), no. 12, 1-21. Zbl0828.34034MR1348521
- SÉRÉ, E., Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z., 209 (1992), 27-42. Zbl0725.58017MR1143210
- SÉRÉ, E., Looking for the Bernoulli shift, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 10 (1993), no. 5, 561-590. Zbl0803.58013MR1249107
- SERRA, E.- TARALLO, M.- TERRACINI, S., On the existence of homoclinic solutions for almost periodic second order systems, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 13 (1996), 783-812. Zbl0873.58032MR1420498
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.