Multibump solutions for Hamiltonian systems with fast and slow forcing

Vittorio Coti Zelati; Margherita Nolasco

Bollettino dell'Unione Matematica Italiana (1999)

  • Volume: 2-B, Issue: 3, page 585-608
  • ISSN: 0392-4041

How to cite

top

Coti Zelati, Vittorio, and Nolasco, Margherita. "Multibump solutions for Hamiltonian systems with fast and slow forcing." Bollettino dell'Unione Matematica Italiana 2-B.3 (1999): 585-608. <http://eudml.org/doc/194782>.

@article{CotiZelati1999,
author = {Coti Zelati, Vittorio, Nolasco, Margherita},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {multibump solutions; superquadratic potentials; second order Hamiltonian system; chaotic behaviour},
language = {eng},
month = {10},
number = {3},
pages = {585-608},
publisher = {Unione Matematica Italiana},
title = {Multibump solutions for Hamiltonian systems with fast and slow forcing},
url = {http://eudml.org/doc/194782},
volume = {2-B},
year = {1999},
}

TY - JOUR
AU - Coti Zelati, Vittorio
AU - Nolasco, Margherita
TI - Multibump solutions for Hamiltonian systems with fast and slow forcing
JO - Bollettino dell'Unione Matematica Italiana
DA - 1999/10//
PB - Unione Matematica Italiana
VL - 2-B
IS - 3
SP - 585
EP - 608
LA - eng
KW - multibump solutions; superquadratic potentials; second order Hamiltonian system; chaotic behaviour
UR - http://eudml.org/doc/194782
ER -

References

top
  1. ALESSIO, F.- CALDIROLI, P.- MONTECCHIARI, P., Genericity of the multibump dynamics for almost periodic duffing-like systems, preprint, SISSA, Trieste (1997). Zbl0941.34032MR1719214
  2. AMBROSETTI, A.- BADIALE, M.- CINGOLANI, S., Semiclassical states of nonlinear Schrödinger equations, Arch. Rational Mech. Anal., 140 (1997), 285-300. Zbl0896.35042MR1486895
  3. AMBROSETTI, A.- BERTI, M., Homoclinics and complex dynamics in slowly oscillating systems, Discrete Contin. Dynam. Systems (1998). Zbl0952.34037MR1612728
  4. ANGENENT, S., A variational interpretation of Melnikov's function and exponentially small separatrix splitting, Symplectic Geometry (Cambridge) (J. Mierczyński, ed.), London Math. Soc. Lecture Note, no. 192, Cambridge University Press (1993), 5-35. Zbl0810.34037MR1297127
  5. BERTOTTI, M. L.- BOLOTIN, S. V., Homoclinic solutions of quasiperiodic Lagrangian systems, Differential Integral Equations, 8 (1995), 1733-1760. Zbl0827.34037MR1347977
  6. BESSI, U., Homoclinic and period-doubling bifurcations for damped systems, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 12 (1995), 1-25. Zbl0836.34044MR1320566
  7. CINGOLANI, S.- NOLASCO, M., Multi-peak periodic semiclassical states for a class of nonlinear Schroedinger equations, Proc. Roy. Soc. Edinburgh Sect. A (1998), to appear. Zbl0922.35158MR1664105
  8. COTI ZELATI, V.- EKELAND, I.- SÉRÉ, E., Solutions doublement asymptotiques de systèmes Hamiltoniens convexes, C. R. Acad. Sci. Paris Sér. I Math., 310 (1990), 631-633. Zbl0703.70020MR1065426
  9. COTI ZELATI, V.- MONTECCHIARI, P.- NOLASCO, M., Multibump homoclinic solutions for a class of second order, almost periodic Hamiltonian systems, NoDEA Nonlinear Differential Equations Appl., 4 (1997), 77-99. Zbl0878.34045MR1433313
  10. COTI ZELATI, V.- RABINOWITZ, P. H., Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), 693-727. Zbl0744.34045MR1119200
  11. DEL PINO, M.- FELMER, P. L., Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 4 (1996), 121-137. Zbl0844.35032MR1379196
  12. DELSHAMS, A.- SEARA, T. M., An asymptotic expression for the splitting of separatrices of the rapidly forced pendulum, Comm. Math. Phys., 150 (1992), 433-463. Zbl0765.70016MR1204314
  13. FIEDLER, B.- SCHEURLE, J., Discretization of homoclinic orbits, rapid forcing and «invisible» chaos, Memoirs of the AMS, no. 570, American Mathematical Society, Providence (1996). Zbl0923.34049MR1342018
  14. FLOER, A.- WEINSTEIN, A., Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69 (1986), 397-408. Zbl0613.35076MR867665
  15. GUI, C., Existence of multi-bump solutions for nonlinear Schrodinger equations via variational method, Comm. Partial Differential Equations, 21 (1996), 787-820. Zbl0857.35116MR1391524
  16. LI, Y. Y., On a singularly perturbed elliptic equation, preprint, Rutgers University (1997). 
  17. LIONS, P.-L., The concentration-compactness principle in the calculus of variations. The locally compact case, part 1., Ann. Inst. H. Poincaré. Anal. Non Linéaire, 1 (1984), 109-145. Zbl0541.49009MR778970
  18. MELNIKOV, V., On the stability of the center for periodic perturbations, Trans. Moscow Math. Soc., 12 (1963), 1-57. Zbl0135.31001MR156048
  19. MONTECCHIARI, P.- NOLASCO, M.- TERRACINI, S., A global condition for periodic Duffing-like equations, Trans. Amer. Math. Soc., to appear. Zbl0926.37005MR1487629
  20. MONTECCHIARI, P.- NOLASCO, M.- TERRACINI, S., Multiplicity of homoclinics for a class of time recurrent second order Hamiltonian systems, Calc. Var. Partial Differential Equations, 5 (1997), 423-555. Zbl0886.58014MR1473307
  21. OH, Y., Existence of semiclassical bound states of nonlinear Schrödinger equations with potential in the class V α , Comm. Partial Differential Equations, 13 (1988), 1499-1519. Zbl0702.35228MR970154
  22. POINCARÉ, H., Les méthodes nouvelles de la mécanique céleste, Gauthier-Villars, Paris (1897-1899). 
  23. RABINOWITZ, P. H., Multibump solutions for an almost periodically forced singular Hamiltonian system, Electron. J. Differential Equations, 1995 (1995), no. 12, 1-21. Zbl0828.34034MR1348521
  24. SÉRÉ, E., Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z., 209 (1992), 27-42. Zbl0725.58017MR1143210
  25. SÉRÉ, E., Looking for the Bernoulli shift, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 10 (1993), no. 5, 561-590. Zbl0803.58013MR1249107
  26. SERRA, E.- TARALLO, M.- TERRACINI, S., On the existence of homoclinic solutions for almost periodic second order systems, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 13 (1996), 783-812. Zbl0873.58032MR1420498

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.