Symétrisations indépendantes du temps pour certains opérateurs du type de Schrödinger. I

Jiro Takeuchi

Bollettino dell'Unione Matematica Italiana (2002)

  • Volume: 5-B, Issue: 1, page 1-53
  • ISSN: 0392-4041

Abstract

top
We give sufficient conditions and necessary conditions for the Cauchy problem for certain operators of Schrödinger type to be well posed in the Sobolev spaces. Operators of which we treat are Schrödinger operators with complex-valued vector potentials, those generalizations to 2-evolution operators in the sense of Petrowsky and certain Leray-Volevich systems of linear partial differential operators. The method that we use in this article is time-independent -symmetrization of operators which has been proposed in our Notes [52] to [54].

How to cite

top

Takeuchi, Jiro. "Symétrisations indépendantes du temps pour certains opérateurs du type de Schrödinger. I." Bollettino dell'Unione Matematica Italiana 5-B.1 (2002): 1-53. <http://eudml.org/doc/194840>.

@article{Takeuchi2002,
author = {Takeuchi, Jiro},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {fre},
month = {2},
number = {1},
pages = {1-53},
publisher = {Unione Matematica Italiana},
title = {Symétrisations indépendantes du temps pour certains opérateurs du type de Schrödinger. I},
url = {http://eudml.org/doc/194840},
volume = {5-B},
year = {2002},
}

TY - JOUR
AU - Takeuchi, Jiro
TI - Symétrisations indépendantes du temps pour certains opérateurs du type de Schrödinger. I
JO - Bollettino dell'Unione Matematica Italiana
DA - 2002/2//
PB - Unione Matematica Italiana
VL - 5-B
IS - 1
SP - 1
EP - 53
LA - fre
UR - http://eudml.org/doc/194840
ER -

References

top
  1. BABA, A., The -wellposed Cauchy problem for Schrödinger type equations, Tsukuba J. Math., 16 (1992), 235-256. Zbl0784.35018MR1178678
  2. BABA, A., The -wellposed Cauchy problem for Schrödinger type equations, Tsukuba J. Math., 18 (1994), 101-117. Zbl0815.35006MR1287832
  3. BIRKHOFF, G. D., Quantum mechanics and asymptotic series, Bull. Amer. Math. Soc., 39 (1933), 681-700. Zbl0008.08902MR1562719
  4. CALDERÓN, A. P.- VAILLANCOURT, R., A class of bounded pseudo-differential operators, Proc. Nat. Acad. Sci. U.S.A., 69 (1972), 1185-1187. Zbl0244.35074MR298480
  5. CARTAN, H., Formes Différentielles, Cours de Mathématiques II, Collection Méthodes, Hermann, Paris, 1967. Zbl0184.12701MR231303
  6. CONSTANTIN, P.- SAUT, J. C., Local smoothing properties of dispersive equations, J. Amer. Math. Soc., 1 (1988), 413-439. Zbl0667.35061MR928265
  7. COURANT, R.- HILBERT, D., Methods of Mathematical Physics, vol. I, Interscience Publishers, New York, 1953. Zbl0051.28802MR65391
  8. DOI, S., On the Cauchy problem for Schrödinger type equations and the regularity of solutions, J. Math. Kyoto Univ., 34 (1994), 319-328. Zbl0807.35026MR1284428
  9. DOI, S., Remarks on the Cauchy problem for Schrödinger type equations, Comm. Partial Differential Equations, 21 (1996), 163-178. Zbl0853.35025MR1373768
  10. GARDING, L.- KOTAKE, T.- LERAY, J., Uniformisation et développement asymptotique de la solution du problème de Cauchy linéaire à données holomorphes, Bull. Soc. Math. France, 92 (1964), 263-361. Zbl0147.08101MR196280
  11. HARA, S., A necessary condition for -wellposed Cauchy problem of Schrödinger type equations with variable coefficients, J. Math. Kyoto Univ., 32 (1992), 287-305. Zbl0794.35113MR1173967
  12. HAYSHI, N.- NAKAMITSU, K.- TSUTSUMI, M., On solutions of the initial value problem for the nonlinear Schrödinger equations, J. Funct. Anal., 71 (1987), 218-245. Zbl0657.35033MR880978
  13. HILLE, E.- PHILLIPS, R. S., Functional Analysis and Semi-Groups, Amer. Math. Soc., Providence, 1957. Zbl0078.10004MR89373
  14. HÖRMANDER, L., The Analysis of Linear Partial Differential Operators, vol. III, Springer-Verlag, Berlin, 1985. Zbl0601.35001
  15. HUFFORD, G., On the characteristic matrix of a matrix of differential operators, J. Diff. Equations, 1 (1965), 27-38. Zbl0143.13302MR176228
  16. ICHINOSE, W., Some remarks on the Cauchy problem for Schrödinger type equations, Osaka J. Math., 21 (1984), 565-581. Zbl0572.35021MR759481
  17. ICHINOSE, W., Sufficient condition on wellposedness for Schrödinger type equations, Comm. Partial Differential Equations, 9 (1984), 33-48. Zbl0563.35066MR735147
  18. ICHINOSE, W., The Cauchy problem for Schrödinger type equations with variables coefficients, Osaka J. Math., 24 (1987), 853-886. Zbl0654.35042MR927063
  19. ICHINOSE, W., On well-posedness of the Cauchy problem for Schrödinger type equations on the Riemannian manifold and Maslov theory, Duke Math. J., 56 (1988), 549-588. Zbl0713.58055MR948533
  20. ICHINOSE, W., A note on the Cauchy problem for Schrödinger type equations on the Riemannian manifold, Math. Japonica, 35 (1990), 205-213. Zbl0707.35126MR1049082
  21. ICHINOSE, W., On the Cauchy problem for Schrödinger type equations and Fourier integral operators, J. Math. Kyoto Univ., 33 (1993), 583-620. Zbl0802.35125MR1239080
  22. ICHINOSE, W., On a necessary condition for well-posedness of the Cauchy problem for some Schrödinger type equations with a potential term, J. Math. Kyoto Univ., 33 (1993), 647-663. Zbl0802.35126MR1239083
  23. KAJITANI, K., The Cauchy problem for Schrödinger type equations with variable coefficients, J. Math. Soc. Japan, 50 (1998), 179-202. Zbl0917.35129MR1484618
  24. KAJITANI, K., The Cauchy problem for Schrödinger type equations, Bull. Sc. Math., 2e série, 119 (1995), 459-473. Zbl0856.35024MR1354247
  25. KATO, T., Nonlinear Schrödinger equations, Schrödinger Operators, Springer Lecture Notes in Physics, 345 (1989), 218-263. Zbl0698.35131
  26. KATO, T., On the Cauchy problemfor the (generalized) Korteweg-de Vries equation, Studies in Appl. Math.Adv. in Math., Suppl. Studies, 8 (1983), 93-128. Zbl0549.34001MR759907
  27. KUMANO-GO, H., Pseudo-Differential Operators, MIT Press, 1981. Zbl0489.35003
  28. LERAY, J., Hyperbolic Differential Equations, Inst. Adv. Study, Princeton, (1953). Zbl0588.35002MR63548
  29. LERAY, J., Lagrangian Analysis and Quantum Mechanics. A mathematical structure related to asymptotic expansions and the Maslov index, MIT Press, 1981. Zbl0483.35002MR644633
  30. MASLOV, V. P., Theory of Perturbations and Asymptotic Methods, Moskow, 1965 (en russe); French translation from Russian, Dunod, Paris, 1970. 
  31. MIYAKE, M., On Cauchy-Kowalewski's theorem for general systems, Publ. Res. Inst. Math. Sci. Kyoto Univ., 15 (1979), 315-337. Zbl0426.35007MR555658
  32. MIZOHATA, S., Some remarks on the Cauchy problem, J. Math. Kyoto Univ., 1 (1961), 109-127. Zbl0104.31903MR170112
  33. MIZOHATA, S., On Kowalewskian systems, Russian Math. Surveys, 29-7 (1974), 223-235. Zbl0305.35003MR402242
  34. MIZOHATA, S., On some Schrödinger type equations, Proc. Japan Acad., 57 (1981), 81-84. Zbl0469.35039MR605288
  35. MIZOHATA, S., Sur quelques équations du type Schödinger, Séminaire J. Vaillant1980-1981, Univ. Paris-VI. Zbl0469.35040
  36. MIZOHATA, S., Sur quelques équations du type Schödinger, Journées «Équations aux Dérivées Partielles», Saint-Jean-de-Monts, Soc. Math. France, 1981. Zbl0469.35040
  37. MIZOHATA, S., On the Cauchy Problem, Notes and Reports in Math., 3, Academic Press, 1985. Zbl0616.35002MR860041
  38. PETROWSKY, I. G., Über das Cauchysche Problem für ein System linearer partieller Differentialgleichungen im Gebiete der nicht-analytischen Funktionen, Bull. Univ. État Moscou, 1 (1938), 1-74. JFM64.1156.02
  39. SCHRÖDINGER, E., Quantisierung als Eigenwertproblem (Vierte Mitteilung), Ann. der Physik, 81 (1926), 109-139. JFM52.0966.03
  40. SCHRÖDINGER, E., Gesammelte Abhandlungen, 3: Beiträge zur Quantentheorie Herausgegeben von der Österreichischen Akademie der Wissenschaften, Verlag der Österreichischen Akademie der Wissenschaften, Wien, 1984. MR889674JFM48.0009.04
  41. TAKEUCHI, J., A necessary condition for the well-posedness of the Cauchy problem for certain class of evolution equations, Proc. Japan Acad., 50 (1974), 133-137. Zbl0308.35061MR367491
  42. TAKEUCHI, J., Some remarks on my paper «On the Cauchy problem for some nonkowalewskian equations with distinct characteristic roots», J. Math. Kyoto Univ., 24 (1984), 741-754. Zbl0572.35020MR775984
  43. TAKEUCHI, J., On the Cauchy problem for systems of linear partial differential equations of Schrödinger type, Bull. Iron and Steel Technical College, 18 (1984), 25-34. MR872970
  44. TAKEUCHI, J., A necessary condition for -wellposedness of the Cauchy problem for linear partial differential operators of Schrödinger type, J. Math. Kyoto Univ., 25 (1985), 459-472. Zbl0587.35014MR807492
  45. TAKEUCHI, J., Le problème de Cauchy pour quelques équations aux dérivées partielles du type de Schrödinger, C. R. Acad. Sci. Paris, Série I, 310 (1990), 823-826. Zbl0721.35024MR1058504
  46. TAKEUCHI, J., Le problème de Cauchy pour quelques équations aux dérivées partielles du type de Schrödinger, II, C. R. Acad. Sci. Paris, Série I, 310 (1990), 855-858. Zbl0803.35118MR1060600
  47. TAKEUCHI, J., Le probleme de Cauchy pour certaines equations aux derivees partielles du type de Schrodinger, III, C. R. Acad. Sci. Paris, Serie I, 312 (1991), 341-344. Zbl0803.35119MR1094197
  48. TAKEUCHI, J., Le probleme de Cauchy pour certaines equations aux derivees partielles du type de Schrodinger, IV, C. R. Acad. Sci. Paris, Serie I, 312 (1991), 587-590. Zbl0803.35120MR1101038
  49. TAKEUCHI, J., Le probleme de Cauchy pour certains systemes de Leray-Volevi du type de Schrodinger, V, C. R. Acad. Sci. Paris, Serie I, 312 (1991), 799-802. Zbl0803.35121MR1108494
  50. TAKEUCHI, J., Le probleme de Cauchy pour certaines equations aux derivees partielles du type de Schrodinger, VI, C. R. Acad. Sci. Paris, Serie I, 313 (1991), 761-764. Zbl0803.35122MR1139834
  51. TAKEUCHI, J., Le probleme de Cauchy pour certaines equations aux derivees partielles du type de Schrodinger, VII, C. R. Acad. Sci. Paris, Serie I, 314 (1992), 527-530. Zbl0834.35109MR1159395
  52. TAKEUCHI, J., Le probleme de Cauchy pour certaines equations aux derivees partielles du type de Schrodinger, VIII; symetrisations independantes du temps, C. R. Acad. Sci. Paris, Serie I, 315 (1992), 1055-1058. Zbl0768.35066
  53. TAKEUCHI, J., Le probleme de Cauchy pour certaines equations aux derivees partielles du type de Schrodinger, IX; symetrisations independantes du temps, C. R. Acad. Sci. Paris, Serie I, 316 (1993), 1025-1028. Zbl0776.35062
  54. TAKEUCHI, J., Le probleme de Cauchy pour certaines equations aux derivees partielles du type de Schrodinger, X; symetrisations independantes du temps, Proc. Japan Acad., Ser. A, 69 (1993), 189-192. Zbl0828.35115
  55. TAKEUCHI, J., Le probleme de Cauchy pour certaines equations aux derivees partielles du type de Schrodinger, Thèse de Doctorat de l'Université Paris-VI, Octobre 1995, pp. 115. Zbl0834.35109
  56. TARAMA, S., On the -wellposed Cauchy problem for some Schrodinger type equations, Mem. Fac. Eng. Kyoto Univ., 55 (1993), 143-153. MR1251240
  57. VOLEVICH, L. R., On general systems of differential equations, Soviet Math. Dokl., 1 (1960), 458-461. Zbl0107.30603MR131045
  58. VOLEVICH, L. R., A problem of linear programming arising in differential equations, Uspehi Mat. Nauk., 18-3 (1963), 155-162 (en russe). Zbl0178.11001MR162046
  59. WAGSCHAL, C., Diverses formulations du problème de Cauchy pour un système d'équations aux dérivées partielles, J. Math. Pures et Appl., 53 (1974), 51-69. Zbl0265.35017MR361415
  60. YAJIMA, K., On smoothing property of Schrodinger propagators, Functional Analytic Methods for partial differential equations, Proc. Intern. Conf. on Functional Analysis and its Applications, SpringerLecture Notes in Math., 1450 (1990), 20-35. Zbl0725.35084MR1084599
  61. YOSIDA, K., Functional Analysis, Springer-Verlag, 1965. 

NotesEmbed ?

top

You must be logged in to post comments.