Symmetries and Kähler-Einstein metrics
Claudio Arezzo; Alessandro Ghigi
Bollettino dell'Unione Matematica Italiana (2005)
- Volume: 8-B, Issue: 3, page 605-613
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topArezzo, Claudio, and Ghigi, Alessandro. "Symmetries and Kähler-Einstein metrics." Bollettino dell'Unione Matematica Italiana 8-B.3 (2005): 605-613. <http://eudml.org/doc/194882>.
@article{Arezzo2005,
abstract = {We consider Fano manifolds $M$ that admit a collection of finite automorphism groups $G_1, \ldots , G_k$ , such that the quotients $M/G_i$ are smooth Fano manifolds possessing a Kähler-Einstein metric. Under some numerical and smoothness assumptions on the ramification divisors, we prove that $M$ admits a Kähler-Einstein metric too.},
author = {Arezzo, Claudio, Ghigi, Alessandro},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {605-613},
publisher = {Unione Matematica Italiana},
title = {Symmetries and Kähler-Einstein metrics},
url = {http://eudml.org/doc/194882},
volume = {8-B},
year = {2005},
}
TY - JOUR
AU - Arezzo, Claudio
AU - Ghigi, Alessandro
TI - Symmetries and Kähler-Einstein metrics
JO - Bollettino dell'Unione Matematica Italiana
DA - 2005/10//
PB - Unione Matematica Italiana
VL - 8-B
IS - 3
SP - 605
EP - 613
AB - We consider Fano manifolds $M$ that admit a collection of finite automorphism groups $G_1, \ldots , G_k$ , such that the quotients $M/G_i$ are smooth Fano manifolds possessing a Kähler-Einstein metric. Under some numerical and smoothness assumptions on the ramification divisors, we prove that $M$ admits a Kähler-Einstein metric too.
LA - eng
UR - http://eudml.org/doc/194882
ER -
References
top- AREZZO, C. - GHIGI, A. - PIROLA, G. P., Symmetries, Quotients and Kähler-Einstein metrics, 2003, preprint. Zbl1089.32013MR2212883
- AREZZO, C. - LOI, A., Moment maps, scalar curvature and quantization of Kähler manifolds, Comm. Math. Phys., to appear. Zbl1062.32021MR2053943
- DEMAILLY, JEAN-PIERRE - KOLLÁR, JÁNOS, Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds, Ann. Sci. École Norm. Sup. (4), 34(4) (2001), 525-556. Zbl0994.32021MR1852009
- DONALDSON, S. K., Scalar curvature and projective embeddings. I, J. Differential Geom., 59(3) (2001), 479-522. Zbl1052.32017MR1916953
- DONALDSON, S. K., Scalar curvature and stability of toric varieties, J. Differential Geom., 62(2) (2002), 289-349. Zbl1074.53059MR1988506
- ISKOVSKIKH, V. A. - PROKHOROV, YU. G., Fano varieties. In Algebraic geometry, V, volume 47 of Encyclopaedia Math. Sci., pages 1-247, Springer, Berlin, 1999. Zbl0912.14013MR1668579
- KOLLÁR, JÁNOS, Singularities of pairs. In Algebraic geometrySanta Cruz 1995, volume 62 of Proc. Sympos. Pure Math., pages 221-287. Amer. Math. Soc., Providence, RI, 1997. Zbl0905.14002MR1492525
- NADEL, ALAN MICHAEL, Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature, Ann. of Math. (2), 132(3) (1990), 549-596. Zbl0731.53063MR1078269
- PAUL, S. T. - TIAN, G., Analysis of geometric stability, preprint. Zbl1076.32018MR2078110
- RICHBERG, ROLF, Stetige streng pseudokonvexe Funktionen, Math. Ann., 175 (1968), 257-286. Zbl0153.15401MR222334
- TIAN, G., On Calabis conjecture for complex surfaces with positive first Chern class, Invent. Math., 101 (1) (1990), 101-172. Zbl0716.32019MR1055713
- TIAN, GANG, Kähler-Einstein metrics with positive scalar curvature, Invent. Math., 130(1) (1997), 1-37. Zbl0892.53027MR1471884
- GANG TIAN, , Canonical metrics in Kähler geometry, Birkhäuser Verlag, Basel, 2000. Notes taken by Meike Akveld. Zbl0978.53002MR1787650
- XUJIA WANG, - XIAOHUA ZHU, , Kähler-Ricci solitons on toric manifolds with positive first Chern class, 2002, preprint. Zbl1086.53067MR2084775
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.