Grassmann defective surfaces

Claudio Fontanari

Bollettino dell'Unione Matematica Italiana (2004)

  • Volume: 7-B, Issue: 2, page 369-379
  • ISSN: 0392-4041

Abstract

top
A projective variety V is 1 , h -defective if the Grassmannian of lines contained in the span of h + 1 independent points on V has dimension less than the expected one. In the present paper, which is inspired by classical work of Alessandro Terracini, we prove a criterion of 1 , h -defectivity for algebraic surfaces and we discuss its applications to Veronese embeddings and to rational normal scrolls.

How to cite

top

Fontanari, Claudio. "Grassmann defective surfaces." Bollettino dell'Unione Matematica Italiana 7-B.2 (2004): 369-379. <http://eudml.org/doc/195075>.

@article{Fontanari2004,
abstract = {A projective variety $V$ is $(1, h)$-defective if the Grassmannian of lines contained in the span of $h+1$ independent points on $V$ has dimension less than the expected one. In the present paper, which is inspired by classical work of Alessandro Terracini, we prove a criterion of $(1, h)$-defectivity for algebraic surfaces and we discuss its applications to Veronese embeddings and to rational normal scrolls.},
author = {Fontanari, Claudio},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {369-379},
publisher = {Unione Matematica Italiana},
title = {Grassmann defective surfaces},
url = {http://eudml.org/doc/195075},
volume = {7-B},
year = {2004},
}

TY - JOUR
AU - Fontanari, Claudio
TI - Grassmann defective surfaces
JO - Bollettino dell'Unione Matematica Italiana
DA - 2004/6//
PB - Unione Matematica Italiana
VL - 7-B
IS - 2
SP - 369
EP - 379
AB - A projective variety $V$ is $(1, h)$-defective if the Grassmannian of lines contained in the span of $h+1$ independent points on $V$ has dimension less than the expected one. In the present paper, which is inspired by classical work of Alessandro Terracini, we prove a criterion of $(1, h)$-defectivity for algebraic surfaces and we discuss its applications to Veronese embeddings and to rational normal scrolls.
LA - eng
UR - http://eudml.org/doc/195075
ER -

References

top
  1. CASANELLAS I RIUS, M., Teoria de liaison en codimensió arbitrària, PhD Thesis (Universitat de Barcelona). 
  2. CHIANTINI, L.- CILIBERTO, C., Weakly defective varieties, Trans. Amer. Math. Soc., 354 (2002), 151-178. Zbl1045.14022MR1859030
  3. CHIANTINI, L.- COPPENS, M., Grassmannians of secant varieties, Forum Math., 13 (2001), 615-628. Zbl1033.14033MR1858491
  4. CILIBERTO, C., Superficie algebriche complesse: idee e metodi della classificazione, Atti del convegno di Geometria Algebrica, Genova-Nervi, 12-17 aprile 1984, 39-157. 
  5. CILIBERTO, C., Geometric Aspects of Polynomial Interpolation in More Variables and of Waring's Problem, European Congress of Mathematics, Vol. I (Barcelona, 2000), 289-316. Zbl1078.14534MR1905326
  6. CILIBERTO, C.- HIRSCHOWITZ, A., Hypercubique de P 4 avec sept points singuliers generiques, C. R. Acad. Sci. Paris, 313 I (1991), 135-137. Zbl0746.14001MR1121575
  7. CILIBERTO, C.- LOPEZ, A. F., On the existence of components of the Noether-Lefschetz locus with given codimension, Manuscripta Math., 73 (1991), 341-357. Zbl0769.14018MR1134567
  8. DIONISI, C.- FONTANARI, C., Grassmann defectivity à la Terracini, Le Matematiche, LVI (2001), 245-255. Zbl1177.14093MR2009896
  9. LONDON, F., Ueber die Polarfiguren der ebenen Kurven dritter Ordnung, Math. Ann., 36 (1890). MR1510635JFM22.0735.03
  10. TERRACINI, A., Sulla rappresentazione delle coppie di forme ternarie mediante somme di potenze di forme lineari, Ann. di Matem. pura ed appl., XXIV, III (1915), 91-100. JFM45.0239.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.