Zero-dimensional subschemes of ruled varieties

Edoardo Ballico; Cristiano Bocci; Claudio Fontanari

Open Mathematics (2004)

  • Volume: 2, Issue: 4, page 538-560
  • ISSN: 2391-5455

Abstract

top
Here we study zero-dimensional subschemes of ruled varieties, mainly Hirzebruch surfaces and rational normal scrolls, by applying the Horace method and the Terracini method

How to cite

top

Edoardo Ballico, Cristiano Bocci, and Claudio Fontanari. "Zero-dimensional subschemes of ruled varieties." Open Mathematics 2.4 (2004): 538-560. <http://eudml.org/doc/268763>.

@article{EdoardoBallico2004,
abstract = {Here we study zero-dimensional subschemes of ruled varieties, mainly Hirzebruch surfaces and rational normal scrolls, by applying the Horace method and the Terracini method},
author = {Edoardo Ballico, Cristiano Bocci, Claudio Fontanari},
journal = {Open Mathematics},
keywords = {14N05},
language = {eng},
number = {4},
pages = {538-560},
title = {Zero-dimensional subschemes of ruled varieties},
url = {http://eudml.org/doc/268763},
volume = {2},
year = {2004},
}

TY - JOUR
AU - Edoardo Ballico
AU - Cristiano Bocci
AU - Claudio Fontanari
TI - Zero-dimensional subschemes of ruled varieties
JO - Open Mathematics
PY - 2004
VL - 2
IS - 4
SP - 538
EP - 560
AB - Here we study zero-dimensional subschemes of ruled varieties, mainly Hirzebruch surfaces and rational normal scrolls, by applying the Horace method and the Terracini method
LA - eng
KW - 14N05
UR - http://eudml.org/doc/268763
ER -

References

top
  1. [1] B. Adlandsvik: “Joins and higher secant varieties”, Math. Scand., Vol. 62, (1987), pp. 213–222. Zbl0657.14034
  2. [2] J. Alexander and A. Hirschowitz: “Generic hypersurface singularities”, Proc. Indian Acad. Sci. Math. Sci., Vol. 107, (1997), pp. 139–154. Zbl0928.14024
  3. [3] J. Alexander and A. Hirschowitz: “Polynomial interpolation in several variables”, J. Algebraic Geometry, Vol. 4, (1995), pp. 201–222. Zbl0829.14002
  4. [4] J. Alexander and A. Hirschowitz: “An asymptotic vanishing theorem for generic unions of multiple points”, Invent. Math., Vol. 140, (2000), pp. 303–325. http://dx.doi.org/10.1007/s002220000053 Zbl0973.14026
  5. [5] E. Arbarello and M. Cornalba: “Footnotes to a paper of Beniamino Segre”, Math. Ann., Vol. 256, (1981), pp. 341–362. http://dx.doi.org/10.1007/BF01679702 Zbl0454.14023
  6. [6] E. Ballico: “On the symmetric algebra of stable vector bundles on curves”, Quart. J. Math., Vol. 52, (2001), pp. 261–268. http://dx.doi.org/10.1093/qjmath/52.3.261 Zbl1024.14016
  7. [7] M. V. Catalisano, A.V. Geramita and G. Gimigliano: “On the secant varieties to the tangential varieties of a Vernnesean”, Proc. Amer. Math., Vol. 130, (2001), pp. 875–895. 
  8. [8] L. Chiantini and C. Ciliberto: “Weakly defective varieties”, Trans. Amer. Math. Soc., Vol. 354, (2002), pp. 151–178. http://dx.doi.org/10.1090/S0002-9947-01-02810-0 Zbl1045.14022
  9. [9] L. Chiantini and C. Ciliberto: “Threefolds with degrenerate secant variety: on a theorem of G. Scorza”, M. Dekker Lect. Notes, Vol. 217, (2001), pp. 111–124. Zbl1048.14034
  10. [10] L. Chiantini and C. Ciliberto: “The Grassmannians of secant varieties of curves are not defective”, Indag. Math., Vol. 13, (2002), pp. 23–28. http://dx.doi.org/10.1016/S0019-3577(02)90003-0 Zbl1047.14035
  11. [11] L. Chiantini and C. Ciliberto: In preparation. 
  12. [12] L. Chiantini and M. Coppens: “Grassmannians of secant varieties”, Forum Math., Vol. 13, (2001), pp. 615–628. http://dx.doi.org/10.1515/form.2001.025 
  13. [13] C. Ciliberto and R. Miranda: “Interpolations on curvilinear schemes”, J. Algebra, Vol. 203, (1998), pp. 677–678. http://dx.doi.org/10.1006/jabr.1997.7241 
  14. [14] C. Ciliberto and R. Miranda: “The Segre and Harbourne- Hirschowitz conjectures”, In: Applications of algebraic geometry to coding theory, physics and computation (Eilat 2001), NSTO Sci. Ser. II Math. Phys. Chem., Vol. 36, Kluwer Acad. Publ., Dordrecht, 2001, pp. 37–51. Zbl1015.14012
  15. [15] C. Ciliberto: ‘Sogni sulle varietà secanti”, Firenze, 18 Aprile, (2002). 
  16. [16] M. Coppens: “The Weierstrass gap sequence of the ordinary ramification points of trigonal coverings of ℙ1; existence of a kind of Weierstrass gap sequence”, J. Pure Appl. Algebra, Vol. 43, (1986), pp. 11–25. http://dx.doi.org/10.1016/0022-4049(86)90002-2 
  17. [17] M. Coppens: Smooth threefolds with G 2,3 -defect, 2003, preprint. 
  18. [18] M. Dale: “Terracini’s lemma and the secant variety of a curve”, Proc. London Math. Soc. (3), Vol. 49, (1984), pp. 329–339. Zbl0571.14025
  19. [19] C. Dionisi and C. Fontanari: “Grassmann defectivity à la Terracini”, Le Matematiche, Vol. 56, (2001), pp. 245–255. 
  20. [20] C. Fontanari: “Grassmann defective surfaces”, Bollettino U.M.I., Vol. 8(7-B), (2004), pp. 369–379. Zbl1150.14014
  21. [21] C. Fontanari: “On Waring’s problem for many forms and Grassmann defective varieties”, J. Pure Appl. Algebra, Vol. 74(3), (2002), pp. 243–247. http://dx.doi.org/10.1016/S0022-4049(02)00066-X Zbl1017.14020
  22. [22] B. Harbourne: “The geometry of rational surfaces and Hilbert functions of points in the plane”, In: Proceedings of the 1984 Vancouver Conference in Algebraic Geometry, Can. Math. Soc. Conf. Proc., Vol. 6, Providence, RI, 1986, pp. 95–111. 
  23. [23] R. Hartshorne and A. Hirschowitz: “Droites en position générale dans l’espace projectif”, In: Algebraic Geometry, Proc., La Rabida 1981, Lect. Notes in Math., Vol. 961, Springer, 1982, pp. 169–189. Zbl0555.14011
  24. [24] A. Hirschowitz: “La méthode d’Horace pour l’interpolation a plusieurs variables”, Manuscripta Math., Vol. 50, (1985), pp. 337–378. http://dx.doi.org/10.1007/BF01168836 Zbl0571.14002
  25. [25] A. Hirschowitz: “Une conjecture pour la cohomologie des diviseurs sur les surfaces rationelles génériques”, J. Reine Angew. Math., Vol. 397, (1989), pp. 208–213. 
  26. [26] A. Laface: “On linear systems of curves on rational scrolls”, Geom. Dedicata, Vol. 90, (2002), pp. 127–144. http://dx.doi.org/10.1023/A:1014958409472 
  27. [27] F. Palatini: “Sulle superficie algebriche i cui s h (h+1)-seganti non riempiono lo spazio ambiente”, Atti Accad. Torino, Vol. 41, (1906), pp. 634–640. Zbl37.0667.01
  28. [28] F. Palatini: “Sulle varietà algebriche per le quali sono di dimensione minore dell’ordinario senza riempire lo spazio ambiente, una o alcune delle varietà formate da spazi seganti”, Atti. Accad Torino, Vol. 44, (1909), pp. 362–374. Zbl40.0713.01
  29. [29] G. Scorza: “Un problema sui sistemi lineari di curve appartenenti a una superficie algebrica”, Rend. R. Ist. Lombardo, Vol. 2(41), (1908), pp. 813–920. Zbl39.0717.02
  30. [30] G. Scorza: “Determinazione delle varietà a tre dimensioni di S r (r>-7) i cui S 3 tangenti si taglianoa due a due”, Rend. Circ. Mat. Palermo, Vol. 25, (1908), pp. 193–204. Zbl39.0717.01
  31. [31] G. Scorza: “Sulle varietà a quattro dimensioni di S r (r>-9) i cui S 4 tangenti si tagliano a due a due”, Rend. Circ. Mat. Palermo, Vol. 27, (1909), pp. 148–178. Zbl40.0712.01
  32. [32] A. Tannenbaum: “Families of algebraic curves with nodes”, Compositio Math., Vol. 41, (1980), pp. 107–119. Zbl0399.14018
  33. [33] A. Terracini: “Sulle V K per cui la varietà degli S h (h+1)-seganti ha dimensione minore dell’ordinario”, Rend. Circ. Mat. Palermo, Vol. 31, (1911), pp. 392–396. http://dx.doi.org/10.1007/BF03018812 Zbl42.0673.02
  34. [34] A. Terracini: “Sulla rappresentazione delle coppie di forme ternarie mediante somme di potenze di forme lineari”, Ann. di Matem. pura ed appl., Vol. 24(3), (1915), pp. 91–100. Zbl45.0239.01
  35. [35] A. Terracini: “Su due problemi, concernenti la determinazione di alcune classi di superficie, considerati da G. Scorza e. F. Palatini”, Atti Soc. Natur. e Matem. Modena, Vol. 5(6), (1921–1922), pp. 3–16. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.