Un risultato di convergenza variazionale per funzionali di tipo Ginzburg-Landau in dimensione qualunque

Giovanni Alberti

Bollettino dell'Unione Matematica Italiana (2001)

  • Volume: 4-B, Issue: 2, page 289-310
  • ISSN: 0392-4041

Abstract

top
We describe an approach via Γ -convergence to the asymptotic behaviour of (minimizers of) complex Ginzburg-Landau functionals in any space dimension, summarizing the results of a joint research with S. Baldo and C. Orlandi [ABO1-2].

How to cite

top

Alberti, Giovanni. "Un risultato di convergenza variazionale per funzionali di tipo Ginzburg-Landau in dimensione qualunque." Bollettino dell'Unione Matematica Italiana 4-B.2 (2001): 289-310. <http://eudml.org/doc/195217>.

@article{Alberti2001,
author = {Alberti, Giovanni},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {variational convergence; Ginzburg–Landau functionals},
language = {ita},
month = {6},
number = {2},
pages = {289-310},
publisher = {Unione Matematica Italiana},
title = {Un risultato di convergenza variazionale per funzionali di tipo Ginzburg-Landau in dimensione qualunque},
url = {http://eudml.org/doc/195217},
volume = {4-B},
year = {2001},
}

TY - JOUR
AU - Alberti, Giovanni
TI - Un risultato di convergenza variazionale per funzionali di tipo Ginzburg-Landau in dimensione qualunque
JO - Bollettino dell'Unione Matematica Italiana
DA - 2001/6//
PB - Unione Matematica Italiana
VL - 4-B
IS - 2
SP - 289
EP - 310
LA - ita
KW - variational convergence; Ginzburg–Landau functionals
UR - http://eudml.org/doc/195217
ER -

References

top
  1. ALBERTI, G.- BELLETTINI, G., A non-local anisotropic model for phase transitions. Asymptotic behaviour of rescaled energies, European J. Appl. Math., 9 (1998), 261-284. Zbl0932.49018MR1634336
  2. ALBERTI, G., Variational models for phase transitions. An approach via Γ -convergence, Differential equations and calculus of variations. Topics on geometrical evolution problems and degree theory (Pisa 1996), 95-114, edito da G. Buttazzo et al., Springer-Verlag, Berlin-Heidelberg, 2000. Zbl0957.35017MR1757697
  3. ALBERTI, G.- BALDO, S.- ORLANDI, G., Functions with prescribed singularities, Preprint 2000. Zbl1033.46028MR2002215
  4. ALBERTI, G.- BALDO, S.- ORLANDI, G., Variational convergence for functionals of Ginzburg-Landau type, Lavoro in preparazione. Zbl1160.35013
  5. AMBROSIO, L.- SONER, H. M., A measure-theoretic approach to higher codimension mean curvature flows, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25 (1997), 27-49. Zbl1043.35136MR1655508
  6. BALDO, S.- ORLANDI, G., Codimension one minimal cycles with coefficients in Z or Z p , and variational functionals on fibered spaces, J. Geom. Anal., 9 (1999), 547-568. Zbl0996.49024MR1757578
  7. BALL, J. M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal., 63 (1977), 337-403. Zbl0368.73040MR475169
  8. BETHUEL, F.- ZHENG, X. M., Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal., 80 (1988), 60-75. Zbl0657.46027MR960223

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.