A measure theoretic approach to higher codimension mean curvature flows
Luigi Ambrosio; Halil Mete Soner
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)
- Volume: 25, Issue: 1-2, page 27-49
- ISSN: 0391-173X
Access Full Article
topHow to cite
topAmbrosio, Luigi, and Soner, Halil Mete. "A measure theoretic approach to higher codimension mean curvature flows." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 25.1-2 (1997): 27-49. <http://eudml.org/doc/84289>.
@article{Ambrosio1997,
author = {Ambrosio, Luigi, Soner, Halil Mete},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {varifolds; Ginzburg-Landau systems; renormalized energy; Brakke flow},
language = {eng},
number = {1-2},
pages = {27-49},
publisher = {Scuola normale superiore},
title = {A measure theoretic approach to higher codimension mean curvature flows},
url = {http://eudml.org/doc/84289},
volume = {25},
year = {1997},
}
TY - JOUR
AU - Ambrosio, Luigi
AU - Soner, Halil Mete
TI - A measure theoretic approach to higher codimension mean curvature flows
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 25
IS - 1-2
SP - 27
EP - 49
LA - eng
KW - varifolds; Ginzburg-Landau systems; renormalized energy; Brakke flow
UR - http://eudml.org/doc/84289
ER -
References
top- [1] W.K. Allard, On the first variation of a varifold, Ann. of Math.95 (1972), 417-491. Zbl0252.49028MR307015
- [2] L. Ambrosio - H.M. Soner, Level set approach to mean curvature flow in any codimension, J. Diff. Geom.43 (1996), 693-737. Zbl0868.35046MR1412682
- [3] G. Barles - H.M. Soner - P.E. Souganidis, Front propagation and phase field theory, SIAM. J. Cont. Opt.31 (1993), 439-469. Zbl0785.35049MR1205984
- [4] G. Bellettini - M. Paolini, Some results on minimal barriers in the sense of De Giorgi applied to motion by mean curvature, Rend. Atti Accad. Naz. XL, XIX (1995), 43-67. Zbl0944.53039MR1387549
- [5] G. Bellettini - M. Paolini, Teoremi di confronto tra diverse nozioni di movimento secondo la curvatura media, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Mat. App.6 (1995), 45-54. Zbl0834.35062MR1340281
- [6] G. Bellettini - M. Novaga, Comparison results between minimal barriers and viscosity solutions for geometric evolutions, submitted to Ann. Sc. Norm. Sup., (1996). Zbl0904.35041
- [7] F. Bethuel - H. Brezis - F. Helein, "Ginzburg-Landau vortices", Birkhäuser, Boston, 1994. Zbl0802.35142MR1269538
- [8] K.A. Brakke, "The Motion of a Surface by its Mean Curvature", Princeton University Press, Princeton N. J., 1978. Zbl0386.53047MR485012
- [9] G. Buttazzo - L. Freddi, Functionals defined on measures and aplications to non equi-uniformly elliptic problems, Ann. Mat. Pura Appl.159 (1991), 133-146. Zbl0767.35010MR1145094
- [10] X. Chen, Generation and propagation of interfaces by reaction diffusion equation, J. Diff. Eqs.96 (1992), 116-141. Zbl0765.35024MR1153311
- [11] E. De Giorgi, Su una teoria generale della misura (r - 1)-dimensionale in uno spazio a r dimensioni, Ann. Mat. Pura Appl. Ser IV36 (1954), 191-213. Zbl0055.28504MR62214
- [12] E. De Giorgi, Nuovi teoremi relativi alle misure (r - 1)-dimensionali in uno spazio a r dimensioni, Ric. Mat.4 (1955), 95-113. Zbl0066.29903MR74499
- [13] E. De Giorgi, Some conjectures on flow by mean curvature, in "Proc. Capri Workshop 1990", Benevento-Bruno-Sbordone (eds.), 1990.
- [14] E. De Giorgi, Barriers, boundaries, motion of manifolds, "Lectures held in Pavia", 1994.
- [15] P. De Mottoni - M. Schatzman, Developments of interfaces in Rn, "Proc. Royal Soc. Edinburgh" 116A (1990), 207-220. Zbl0725.35009
- [16] P. De Mottoni - M. Schatzman, Évolution géométriques d'interfaces, C.R. Acad. Sci. Paris Sér. I Math.309 (1989), 453-458. Zbl0698.35078MR1055457
- [17] L.C. Evans - H.M. Soner - P.E. Souganidis, Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math.45 (1992), 1097-1123. Zbl0801.35045MR1177477
- [18] G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Diff. Geom.20 (1984), 237-266. Zbl0556.53001MR772132
- [19] J.E. Hutchinson, Second fundamental form for varifolds and the existence of surfaces minimizing curvature, Indiana Univ. Math. J.35 (1986), 45-71. Zbl0561.53008MR825628
- [20] T. Ilmanen, Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature, J. Diff. Geom.38 (1993), 417-461. Zbl0784.53035MR1237490
- [21] T. Ilmanen, Elliptic regularization and partial regularity for motion by mean curvature, Memoirs of AMS, Vol. 108, Number 520, (1994). Zbl0798.35066MR1196160
- [22] R.L. Jerrard, Lower bounds for generalized Ginzburg-Landau functionals, preprint. Zbl0928.35045MR1684723
- [23] R.L. Jerrard - H.M. Soner, Scaling limits and regularity results for a class of Ginzburg-Landau systems, Ann. Inst. H. Poincaré, forthcoming. Zbl0944.35006MR1697561
- [24] R.L. Jerrard - H.M. Soner, Dynamics of Ginzburg-Landau vortices, Arch. Rat. Mech. An. forthcoming. Zbl0923.35167MR1629646
- [25] F.H. Lin, Dynamics of Ginzburg-Landau vortices: the pinning effect, C.R. Acad. Sci. Paris322 (1996), 625-630. Zbl0846.35137MR1386464
- [26] F.H. Lin, Solutions of Ginzburg-Landau equations and critical points of renormalized energy, Ann. Inst. Henri Poincare12 (1995), 599-622. Zbl0845.35052MR1353261
- [27] F.H. Lin, Some dynamical properties of Ginzburg-Landau votices, C.P.A.M.49 (1996), 323-359. Zbl0853.35058MR1376654
- [28] S. Müller, Mathematical models of microstructure and the Calculus of variations, preprint MPI Leipzig, 1997.
- [29] L.M. Pismen - J. Rubinstein, Motion of vortex lines in the Ginzburg-Landau model, Physica D.47 (1991), 353-360. Zbl0728.35090MR1098255
- [30] Y. Reshetnyak, Weak convergence of completely additive functions on a set, Siberian Math. J.9 (1968), 487-498.
- [31] L. Simon, "Lectures on Geometric Measure Theory, Centre for Mathematical Analysis ", Australian National University, Canberra, 1984. Zbl0546.49019MR756417
- [32] H.M. Soner, Ginzburg-Landau equation and motion by mean curvature, I: convergence; II: development of the initial interface, J. Geometric Analysis (1993), to appear. MR1674799
- [33] M. Struwe, On the asymptotic behaviour of minimizers of the Ginzburg-Landau model in 2 dimensions, Diff. and Int. Equations7 (1994), 1613-1624. Zbl0809.35031MR1269674
Citations in EuDML Documents
top- Giovanni Alberti, Un risultato di convergenza variazionale per funzionali di tipo Ginzburg-Landau in dimensione qualunque
- Robert L. Jerrard, Vortex filament dynamics for Gross-Pitaevsky type equations
- F. Bethuel, G. Orlandi, D. Smets, Vortex motion and phase-vortex interaction in dissipative Ginzburg-Landau dynamics
- Roger Moser, Energy concentration for the Landau–Lifshitz equation
- Didier Smets, Problèmes d’évolution liés à l’énergie de Ginzburg-Landau
- F. Bethuel, G. Orlandi, Uniform estimates for the parabolic Ginzburg–Landau equation
- Fang Hua Lin, Chang You Wang, Harmonic and quasi-harmonic spheres, part III. Rectifiablity of the parabolic defect measure and generalized varifold flows
- Fabrice Bethuel, Giandomenico Orlandi, Didier Smets, Motion of concentration sets in Ginzburg-Landau equations
- F. Bethuel, G. Orlandi, Uniform estimates for the parabolic Ginzburg–Landau equation
- Fabrice Bethuel, Giandomenico Orlandi, Didier Smets, Improved estimates for the Ginzburg-Landau equation : the elliptic case
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.