A measure theoretic approach to higher codimension mean curvature flows

Luigi Ambrosio; Halil Mete Soner

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)

  • Volume: 25, Issue: 1-2, page 27-49
  • ISSN: 0391-173X

How to cite


Ambrosio, Luigi, and Soner, Halil Mete. "A measure theoretic approach to higher codimension mean curvature flows." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 25.1-2 (1997): 27-49. <http://eudml.org/doc/84289>.

author = {Ambrosio, Luigi, Soner, Halil Mete},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {varifolds; Ginzburg-Landau systems; renormalized energy; Brakke flow},
language = {eng},
number = {1-2},
pages = {27-49},
publisher = {Scuola normale superiore},
title = {A measure theoretic approach to higher codimension mean curvature flows},
url = {http://eudml.org/doc/84289},
volume = {25},
year = {1997},

AU - Ambrosio, Luigi
AU - Soner, Halil Mete
TI - A measure theoretic approach to higher codimension mean curvature flows
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 25
IS - 1-2
SP - 27
EP - 49
LA - eng
KW - varifolds; Ginzburg-Landau systems; renormalized energy; Brakke flow
UR - http://eudml.org/doc/84289
ER -


  1. [1] W.K. Allard, On the first variation of a varifold, Ann. of Math.95 (1972), 417-491. Zbl0252.49028MR307015
  2. [2] L. Ambrosio - H.M. Soner, Level set approach to mean curvature flow in any codimension, J. Diff. Geom.43 (1996), 693-737. Zbl0868.35046MR1412682
  3. [3] G. Barles - H.M. Soner - P.E. Souganidis, Front propagation and phase field theory, SIAM. J. Cont. Opt.31 (1993), 439-469. Zbl0785.35049MR1205984
  4. [4] G. Bellettini - M. Paolini, Some results on minimal barriers in the sense of De Giorgi applied to motion by mean curvature, Rend. Atti Accad. Naz. XL, XIX (1995), 43-67. Zbl0944.53039MR1387549
  5. [5] G. Bellettini - M. Paolini, Teoremi di confronto tra diverse nozioni di movimento secondo la curvatura media, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Mat. App.6 (1995), 45-54. Zbl0834.35062MR1340281
  6. [6] G. Bellettini - M. Novaga, Comparison results between minimal barriers and viscosity solutions for geometric evolutions, submitted to Ann. Sc. Norm. Sup., (1996). Zbl0904.35041
  7. [7] F. Bethuel - H. Brezis - F. Helein, "Ginzburg-Landau vortices", Birkhäuser, Boston, 1994. Zbl0802.35142MR1269538
  8. [8] K.A. Brakke, "The Motion of a Surface by its Mean Curvature", Princeton University Press, Princeton N. J., 1978. Zbl0386.53047MR485012
  9. [9] G. Buttazzo - L. Freddi, Functionals defined on measures and aplications to non equi-uniformly elliptic problems, Ann. Mat. Pura Appl.159 (1991), 133-146. Zbl0767.35010MR1145094
  10. [10] X. Chen, Generation and propagation of interfaces by reaction diffusion equation, J. Diff. Eqs.96 (1992), 116-141. Zbl0765.35024MR1153311
  11. [11] E. De Giorgi, Su una teoria generale della misura (r - 1)-dimensionale in uno spazio a r dimensioni, Ann. Mat. Pura Appl. Ser IV36 (1954), 191-213. Zbl0055.28504MR62214
  12. [12] E. De Giorgi, Nuovi teoremi relativi alle misure (r - 1)-dimensionali in uno spazio a r dimensioni, Ric. Mat.4 (1955), 95-113. Zbl0066.29903MR74499
  13. [13] E. De Giorgi, Some conjectures on flow by mean curvature, in "Proc. Capri Workshop 1990", Benevento-Bruno-Sbordone (eds.), 1990. 
  14. [14] E. De Giorgi, Barriers, boundaries, motion of manifolds, "Lectures held in Pavia", 1994. 
  15. [15] P. De Mottoni - M. Schatzman, Developments of interfaces in Rn, "Proc. Royal Soc. Edinburgh" 116A (1990), 207-220. Zbl0725.35009
  16. [16] P. De Mottoni - M. Schatzman, Évolution géométriques d'interfaces, C.R. Acad. Sci. Paris Sér. I Math.309 (1989), 453-458. Zbl0698.35078MR1055457
  17. [17] L.C. Evans - H.M. Soner - P.E. Souganidis, Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math.45 (1992), 1097-1123. Zbl0801.35045MR1177477
  18. [18] G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Diff. Geom.20 (1984), 237-266. Zbl0556.53001MR772132
  19. [19] J.E. Hutchinson, Second fundamental form for varifolds and the existence of surfaces minimizing curvature, Indiana Univ. Math. J.35 (1986), 45-71. Zbl0561.53008MR825628
  20. [20] T. Ilmanen, Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature, J. Diff. Geom.38 (1993), 417-461. Zbl0784.53035MR1237490
  21. [21] T. Ilmanen, Elliptic regularization and partial regularity for motion by mean curvature, Memoirs of AMS, Vol. 108, Number 520, (1994). Zbl0798.35066MR1196160
  22. [22] R.L. Jerrard, Lower bounds for generalized Ginzburg-Landau functionals, preprint. Zbl0928.35045MR1684723
  23. [23] R.L. Jerrard - H.M. Soner, Scaling limits and regularity results for a class of Ginzburg-Landau systems, Ann. Inst. H. Poincaré, forthcoming. Zbl0944.35006MR1697561
  24. [24] R.L. Jerrard - H.M. Soner, Dynamics of Ginzburg-Landau vortices, Arch. Rat. Mech. An. forthcoming. Zbl0923.35167MR1629646
  25. [25] F.H. Lin, Dynamics of Ginzburg-Landau vortices: the pinning effect, C.R. Acad. Sci. Paris322 (1996), 625-630. Zbl0846.35137MR1386464
  26. [26] F.H. Lin, Solutions of Ginzburg-Landau equations and critical points of renormalized energy, Ann. Inst. Henri Poincare12 (1995), 599-622. Zbl0845.35052MR1353261
  27. [27] F.H. Lin, Some dynamical properties of Ginzburg-Landau votices, C.P.A.M.49 (1996), 323-359. Zbl0853.35058MR1376654
  28. [28] S. Müller, Mathematical models of microstructure and the Calculus of variations, preprint MPI Leipzig, 1997. 
  29. [29] L.M. Pismen - J. Rubinstein, Motion of vortex lines in the Ginzburg-Landau model, Physica D.47 (1991), 353-360. Zbl0728.35090MR1098255
  30. [30] Y. Reshetnyak, Weak convergence of completely additive functions on a set, Siberian Math. J.9 (1968), 487-498. 
  31. [31] L. Simon, "Lectures on Geometric Measure Theory, Centre for Mathematical Analysis ", Australian National University, Canberra, 1984. Zbl0546.49019MR756417
  32. [32] H.M. Soner, Ginzburg-Landau equation and motion by mean curvature, I: convergence; II: development of the initial interface, J. Geometric Analysis (1993), to appear. MR1674799
  33. [33] M. Struwe, On the asymptotic behaviour of minimizers of the Ginzburg-Landau model in 2 dimensions, Diff. and Int. Equations7 (1994), 1613-1624. Zbl0809.35031MR1269674

Citations in EuDML Documents

  1. Giovanni Alberti, Un risultato di convergenza variazionale per funzionali di tipo Ginzburg-Landau in dimensione qualunque
  2. F. Bethuel, G. Orlandi, D. Smets, Vortex motion and phase-vortex interaction in dissipative Ginzburg-Landau dynamics
  3. Robert L. Jerrard, Vortex filament dynamics for Gross-Pitaevsky type equations
  4. Roger Moser, Energy concentration for the Landau–Lifshitz equation
  5. Didier Smets, Problèmes d’évolution liés à l’énergie de Ginzburg-Landau
  6. F. Bethuel, G. Orlandi, Uniform estimates for the parabolic Ginzburg–Landau equation
  7. Fabrice Bethuel, Giandomenico Orlandi, Didier Smets, Motion of concentration sets in Ginzburg-Landau equations
  8. F. Bethuel, G. Orlandi, Uniform estimates for the parabolic Ginzburg–Landau equation
  9. Fang Hua Lin, Chang You Wang, Harmonic and quasi-harmonic spheres, part III. Rectifiablity of the parabolic defect measure and generalized varifold flows
  10. Fabrice Bethuel, Giandomenico Orlandi, Didier Smets, Improved estimates for the Ginzburg-Landau equation : the elliptic case

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.