Composition operators on Banach spaces of formal power series

B. Yousefi; S. Jahedi

Bollettino dell'Unione Matematica Italiana (2003)

  • Volume: 6-B, Issue: 2, page 481-487
  • ISSN: 0392-4041

Abstract

top
Let β n n = 0 be a sequence of positive numbers and 1 p < . We consider the space H p β of all power series f z = n = 0 f n z n such that n = 0 f n p β n p < . Suppose that 1 p + 1 q = 1 and n = 1 n q j β n q = for some nonnegative integer j . We show that if C φ is compact on H p β , then the non-tangential limit of φ j + 1 has modulus greater than one at each boundary point of the open unit disc. Also we show that if C φ is Fredholm on H p β , then φ must be an automorphism of the open unit disc.

How to cite

top

Yousefi, B., and Jahedi, S.. "Composition operators on Banach spaces of formal power series." Bollettino dell'Unione Matematica Italiana 6-B.2 (2003): 481-487. <http://eudml.org/doc/195221>.

@article{Yousefi2003,
abstract = {Let $\\{\beta (n)\\}^\{\infty\}_\{n=0\}$ be a sequence of positive numbers and $1\leq p < \infty$. We consider the space $H^\{p\}(\beta)$ of all power series $f(z)= \sum_\{n=0\}^\{\infty\} \hat\{f\}(n)z^\{n\}$ such that $\sum_\{n=0\}^\{\infty\}|\hat\{f\}(n)|^\{p\}\beta(n)^\{p\}<\infty $ . Suppose that $\frac\{1\}\{p\}+\frac\{1\}\{q\}=1$ and $\sum_\{n=1\}^\{\infty\} \frac\{n^\{qj\}\}\{\beta(n)^\{q\}\}=\infty$ for some nonnegative integer $j$. We show that if $C_\{\varphi\}$ is compact on $H^\{p\}(\beta)$, then the non-tangential limit of $\varphi^\{(j+1)\}$ has modulus greater than one at each boundary point of the open unit disc. Also we show that if $C_\{\varphi\}$ is Fredholm on $H_\{p\}(\beta)$, then $\varphi$ must be an automorphism of the open unit disc.},
author = {Yousefi, B., Jahedi, S.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {481-487},
publisher = {Unione Matematica Italiana},
title = {Composition operators on Banach spaces of formal power series},
url = {http://eudml.org/doc/195221},
volume = {6-B},
year = {2003},
}

TY - JOUR
AU - Yousefi, B.
AU - Jahedi, S.
TI - Composition operators on Banach spaces of formal power series
JO - Bollettino dell'Unione Matematica Italiana
DA - 2003/6//
PB - Unione Matematica Italiana
VL - 6-B
IS - 2
SP - 481
EP - 487
AB - Let $\{\beta (n)\}^{\infty}_{n=0}$ be a sequence of positive numbers and $1\leq p < \infty$. We consider the space $H^{p}(\beta)$ of all power series $f(z)= \sum_{n=0}^{\infty} \hat{f}(n)z^{n}$ such that $\sum_{n=0}^{\infty}|\hat{f}(n)|^{p}\beta(n)^{p}<\infty $ . Suppose that $\frac{1}{p}+\frac{1}{q}=1$ and $\sum_{n=1}^{\infty} \frac{n^{qj}}{\beta(n)^{q}}=\infty$ for some nonnegative integer $j$. We show that if $C_{\varphi}$ is compact on $H^{p}(\beta)$, then the non-tangential limit of $\varphi^{(j+1)}$ has modulus greater than one at each boundary point of the open unit disc. Also we show that if $C_{\varphi}$ is Fredholm on $H_{p}(\beta)$, then $\varphi$ must be an automorphism of the open unit disc.
LA - eng
UR - http://eudml.org/doc/195221
ER -

References

top
  1. AHLFORS, L., Conformal Invariants, McGraw-Hill, New York, 1973. Zbl0272.30012MR357743
  2. CONWAY, J. B., A Course in Functional Analysis, Springer-Verlag, New York, 1985. Zbl0558.46001MR768926
  3. RUDIN, W., Function Theory in the Unit Ball of C n , Grundlehren der Mathematischen Wissenschaften, 241, Springer-Verlag, Berlin, 1980. Zbl0495.32001MR2446682
  4. SEDDIGHI, K.- HEDAYATIYAN, K.- YOUSEFI, B., Operators acting on certain Banach spaces of analytic functions, Internat. J. Math. & Math. Sci., 18, No. 1 (1995), 107-110. Zbl0821.47022
  5. SHIELDS, A. L., Weighted shift operators and analytic function theory, Math. Survey, A.M.S.Providence, 13 (1974), 49-128. Zbl0303.47021MR361899
  6. YOUSEFI, B., On the space l p β , Rendiconti del Circolo Matematico di Palermo Serie II, Tomo XLIX (2000), 115-120. Zbl0952.47027MR1753456

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.