Numerical range of operators acting on Banach spaces
Khadijeh Jahedi; Bahmann Yousefi
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 2, page 495-503
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topJahedi, Khadijeh, and Yousefi, Bahmann. "Numerical range of operators acting on Banach spaces." Czechoslovak Mathematical Journal 62.2 (2012): 495-503. <http://eudml.org/doc/247152>.
@article{Jahedi2012,
abstract = {The aim of the paper is to propose a definition of numerical range of an operator on reflexive Banach spaces. Under this definition the numerical range will possess the basic properties of a canonical numerical range. We will determine necessary and sufficient conditions under which the numerical range of a composition operator on a weighted Hardy space is closed. We will also give some necessary conditions to show that when the closure of the numerical range of a composition operator on a small weighted Hardy space has zero.},
author = {Jahedi, Khadijeh, Yousefi, Bahmann},
journal = {Czechoslovak Mathematical Journal},
keywords = {numerical range; weighted Hardy space; compact operator; composition operator; numerical range; weighted Hardy space; compact operator; composition operator},
language = {eng},
number = {2},
pages = {495-503},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Numerical range of operators acting on Banach spaces},
url = {http://eudml.org/doc/247152},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Jahedi, Khadijeh
AU - Yousefi, Bahmann
TI - Numerical range of operators acting on Banach spaces
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 2
SP - 495
EP - 503
AB - The aim of the paper is to propose a definition of numerical range of an operator on reflexive Banach spaces. Under this definition the numerical range will possess the basic properties of a canonical numerical range. We will determine necessary and sufficient conditions under which the numerical range of a composition operator on a weighted Hardy space is closed. We will also give some necessary conditions to show that when the closure of the numerical range of a composition operator on a small weighted Hardy space has zero.
LA - eng
KW - numerical range; weighted Hardy space; compact operator; composition operator; numerical range; weighted Hardy space; compact operator; composition operator
UR - http://eudml.org/doc/247152
ER -
References
top- Bauer, F. L., 10.1007/BF01386300, Numer. Math. 4 (1962), 103-113. (1962) Zbl0117.11004MR0145329DOI10.1007/BF01386300
- Bonsall, F. F., Duncan, J., Numerical Ranges II, London Mathematical Society Lecture Note Series. 10. London: Cambridge University Press. VII (1973). (1973) Zbl0262.47001MR0442682
- Cowen, C. C., MacCluer, B. D., Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics. Boca Raton, FL: CRC Press. xii (1995). (1995) Zbl0873.47017MR1397026
- Gustafson, K. E., Rao, D. K. M., Numerical Range. The Field of Values of Linear Operators and Matrices, Universitext. New York, NY: Springer. xiv (1996). (1996) Zbl0874.47003MR1417493
- Halmos, P. R., A Hilbert Space Problem Book, Graduate Texts in Mathematics, 19. New York-Heidelberg-Berlin: Springer-Verlag. XVII (1982). (1982) Zbl0496.47001MR0675952
- Hausdorff, F., 10.1007/BF01292610, Math. Zeitschr. 3 (1919), 314-316 German. (1919) MR1544350DOI10.1007/BF01292610
- Jahedi, K., Yousefi, B., On the weighted Hardy spaces, J. Math. Extension 1 (2006), 45-55. (2006) MR2985714
- Lumer, G., 10.1090/S0002-9947-1961-0133024-2, Trans. Am. Math. Soc. 100 (1961), 29-43. (1961) Zbl0102.32701MR0133024DOI10.1090/S0002-9947-1961-0133024-2
- Seddighi, K., Yousefi, B., 10.1090/S0002-9939-1992-1104402-5, Proc. Am. Math. Soc. 116 (1992), 45-52. (1992) Zbl0806.47026MR1104402DOI10.1090/S0002-9939-1992-1104402-5
- Shapiro, J. H., Composition Operators and Classical Function Theory, Universitext: Tracts in Mathematics. New York: Springer-Verlag. xiii (1993). (1993) Zbl0791.30033MR1237406
- Shapiro, J., 10.1090/S0002-9939-1987-0883400-9, Proc. Am. Math. Soc. 100 (1987), 49-57. (1987) Zbl0622.47028MR0883400DOI10.1090/S0002-9939-1987-0883400-9
- Sheilds, A. L., 10.1090/surv/013/02, Topic Operator Theory, math. Survays 13 (1974), 49-128. (1974) DOI10.1090/surv/013/02
- Toeplitz, O., 10.1007/BF01212904, Math. Zs. 2 (1918), 187-197. (1918) MR1544315DOI10.1007/BF01212904
- Yang, K. B., Zhou, Z. H., 10.1007/s10587-010-0079-2, Czech. Math. J. 60 (2010), 1139-1152. (2010) MR2738975DOI10.1007/s10587-010-0079-2
- Yousefi, B., On the space , Rend. Circ. Mat. Palermo, II. Ser. 49 (2000), 115-120. (2000) MR1753456
- Yousefi, B., Jahedi, K., Application of Rosenthal-Dor Theorem on Banach space of formal power series, Islamic Azad University Journal of Sciences. Fall (2001), 3147-3168. (2001) MR1898505
- Yousefi, B., 10.4064/sm147-3-1, Stud. Math. 147 (2001), 201-209. (2001) Zbl0995.47020MR1853768DOI10.4064/sm147-3-1
- Yousefi, B., 10.1007/BF02871850, Rend. Circ. Mat. Palermo (2) 51 (2002), 403-410. (2002) Zbl1194.47035MR1947463DOI10.1007/BF02871850
- Yousefi, B., Jahedi, S., Composition operators on Banach space of formal power series, Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 6 (2003), 481-487. (2003) MR1988217
- Yousefi, B., 10.1023/B:CMAJ.0000027266.18148.90, Czech. Math. J. 54 (2004), 261-266. (2004) MR2040238DOI10.1023/B:CMAJ.0000027266.18148.90
- Yousefi, B., Soltani, R., On the Hilbert space of formal power series, Honam Math. Jour. 26 (2004), 299-308. (2004) MR2155909
- Yousefi, B., Composition operators on weighted Hardy spaces, Kyungpook Math. J. 44 (2004), 319-324. (2004) Zbl1085.47031MR2095415
- Yousefi, B., Dehghan, Y. N., Reflexivity on weighted Hardy spaces, Southeast Asian Bull. Math. 28 (2004), 587-593. (2004) Zbl1081.47039MR2084748
- Yousefi, B., 10.1142/S0129167X05002758, Int. J. Math. 16 (2005), 37-42. (2005) Zbl1081.47038MR2115676DOI10.1142/S0129167X05002758
- Yousefi, B., Kashkuli, A. I., 10.3318/PRIA.2005.105.1.1, Math. Proc. R. Ir. Acad. 105A (2005), 1-7. (2005) Zbl1089.47026MR2138718DOI10.3318/PRIA.2005.105.1.1
- Yousefi, B., Haghkhah, S., 10.12988/ijcms.2007.07139, Int. J. Contemp. Math. Sci. 2 (2007), 1341-1346. (2007) Zbl1159.47011MR2380196DOI10.12988/ijcms.2007.07139
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.