On a subset with nilpotent values in a prime ring with derivation

Vincenzo De Filippis

Bollettino dell'Unione Matematica Italiana (2002)

  • Volume: 5-B, Issue: 3, page 833-838
  • ISSN: 0392-4041

Abstract

top
Let R be a prime ring, with no non-zero nil right ideal, d a non-zero drivation of R , I a non-zero two-sided ideal of R . If, for any x , y I , there exists n = n x , y 1 such that d x , y - x , y n = 0 , then R is commutative. As a consequence we extend the result to Lie ideals.

How to cite

top

De Filippis, Vincenzo. "On a subset with nilpotent values in a prime ring with derivation." Bollettino dell'Unione Matematica Italiana 5-B.3 (2002): 833-838. <http://eudml.org/doc/195233>.

@article{DeFilippis2002,
abstract = {Let $R$ be a prime ring, with no non-zero nil right ideal, $d$ a non-zero drivation of $R$, $I$ a non-zero two-sided ideal of $R$. If, for any $x$, $y \in I$, there exists $n= n(x, y)\geq 1$ such that $( d ([x, y]) - [x, y] )^\{n\}=0$, then $R$ is commutative. As a consequence we extend the result to Lie ideals.},
author = {De Filippis, Vincenzo},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {derivations with nilpotent values; prime rings; commutativity theorems; Lie ideals},
language = {eng},
month = {10},
number = {3},
pages = {833-838},
publisher = {Unione Matematica Italiana},
title = {On a subset with nilpotent values in a prime ring with derivation},
url = {http://eudml.org/doc/195233},
volume = {5-B},
year = {2002},
}

TY - JOUR
AU - De Filippis, Vincenzo
TI - On a subset with nilpotent values in a prime ring with derivation
JO - Bollettino dell'Unione Matematica Italiana
DA - 2002/10//
PB - Unione Matematica Italiana
VL - 5-B
IS - 3
SP - 833
EP - 838
AB - Let $R$ be a prime ring, with no non-zero nil right ideal, $d$ a non-zero drivation of $R$, $I$ a non-zero two-sided ideal of $R$. If, for any $x$, $y \in I$, there exists $n= n(x, y)\geq 1$ such that $( d ([x, y]) - [x, y] )^{n}=0$, then $R$ is commutative. As a consequence we extend the result to Lie ideals.
LA - eng
KW - derivations with nilpotent values; prime rings; commutativity theorems; Lie ideals
UR - http://eudml.org/doc/195233
ER -

References

top
  1. BRESAR, M., One-sided ideals and derivations of prime rings, Proc. Amer. Math. Soc., 122 (1994), 979-983. Zbl0820.16032MR1205483
  2. CARINI, L.- GIAMBRUNO, A., Lie ideals and nil derivations, Boll. UMI, 6 (1985), 497-503. Zbl0579.16017MR821089
  3. DE FILIPPIS, V., Automorphisms and derivations in prime rings, Rendiconti di Mat. Roma, serie VII vol. 19 (1999), 393-404. Zbl0978.16020MR1772067
  4. DI VINCENZO, O. M., On the n -th centralizers of a Lie ideal, Boll. UMI, 7, 3-A (1989), 77-85. Zbl0692.16022MR990089
  5. FELZENSZWALB, B.- LANSKI, C., On the centralizers of ideals and nil derivations, J. Algebra, 83 (1983), 520-530. Zbl0519.16022MR714263
  6. HERSTEIN, I. N., Center-like elements in prime rings, J. Algebra, 60 (1979), 567-574. Zbl0436.16014MR549949
  7. HERSTEIN, I. N., Topics in Ring theory, University of Chicago Press, Chicago1969. Zbl0232.16001MR271135
  8. HONGAN, M., A note on semiprime rings, Int. J. Math. Math. Sci., 20, No. 2 (1997), 413-415. Zbl0879.16025MR1444747
  9. LANSKI, C., Derivations with nilpotent values on Lie ideals, Proc. Amer. Math. Soc., 108, No. 1 (1990), 31-37. Zbl0694.16027MR984803
  10. LANSKI, C.- MONTGOMERY, S., Lie structure of prime rings of characteristic 2 , Pacific J. Math., 42, No. 1 (1972), 117-135. Zbl0243.16018MR323839
  11. LEE, T. K., Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica, vol. 20, No. 1 (1992), 27-38. Zbl0769.16017MR1166215
  12. WONG, T. L., Derivations with power-central values on multilinear polynomials, Algebra Colloquium, 3:4 (1996), 369-378. Zbl0864.16031MR1422975

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.