On a subset with nilpotent values in a prime ring with derivation
Bollettino dell'Unione Matematica Italiana (2002)
- Volume: 5-B, Issue: 3, page 833-838
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topDe Filippis, Vincenzo. "On a subset with nilpotent values in a prime ring with derivation." Bollettino dell'Unione Matematica Italiana 5-B.3 (2002): 833-838. <http://eudml.org/doc/195233>.
@article{DeFilippis2002,
abstract = {Let $R$ be a prime ring, with no non-zero nil right ideal, $d$ a non-zero drivation of $R$, $I$ a non-zero two-sided ideal of $R$. If, for any $x$, $y \in I$, there exists $n= n(x, y)\geq 1$ such that $( d ([x, y]) - [x, y] )^\{n\}=0$, then $R$ is commutative. As a consequence we extend the result to Lie ideals.},
author = {De Filippis, Vincenzo},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {derivations with nilpotent values; prime rings; commutativity theorems; Lie ideals},
language = {eng},
month = {10},
number = {3},
pages = {833-838},
publisher = {Unione Matematica Italiana},
title = {On a subset with nilpotent values in a prime ring with derivation},
url = {http://eudml.org/doc/195233},
volume = {5-B},
year = {2002},
}
TY - JOUR
AU - De Filippis, Vincenzo
TI - On a subset with nilpotent values in a prime ring with derivation
JO - Bollettino dell'Unione Matematica Italiana
DA - 2002/10//
PB - Unione Matematica Italiana
VL - 5-B
IS - 3
SP - 833
EP - 838
AB - Let $R$ be a prime ring, with no non-zero nil right ideal, $d$ a non-zero drivation of $R$, $I$ a non-zero two-sided ideal of $R$. If, for any $x$, $y \in I$, there exists $n= n(x, y)\geq 1$ such that $( d ([x, y]) - [x, y] )^{n}=0$, then $R$ is commutative. As a consequence we extend the result to Lie ideals.
LA - eng
KW - derivations with nilpotent values; prime rings; commutativity theorems; Lie ideals
UR - http://eudml.org/doc/195233
ER -
References
top- BRESAR, M., One-sided ideals and derivations of prime rings, Proc. Amer. Math. Soc., 122 (1994), 979-983. Zbl0820.16032MR1205483
- CARINI, L.- GIAMBRUNO, A., Lie ideals and nil derivations, Boll. UMI, 6 (1985), 497-503. Zbl0579.16017MR821089
- DE FILIPPIS, V., Automorphisms and derivations in prime rings, Rendiconti di Mat. Roma, serie VII vol. 19 (1999), 393-404. Zbl0978.16020MR1772067
- DI VINCENZO, O. M., On the -th centralizers of a Lie ideal, Boll. UMI, 7, 3-A (1989), 77-85. Zbl0692.16022MR990089
- FELZENSZWALB, B.- LANSKI, C., On the centralizers of ideals and nil derivations, J. Algebra, 83 (1983), 520-530. Zbl0519.16022MR714263
- HERSTEIN, I. N., Center-like elements in prime rings, J. Algebra, 60 (1979), 567-574. Zbl0436.16014MR549949
- HERSTEIN, I. N., Topics in Ring theory, University of Chicago Press, Chicago1969. Zbl0232.16001MR271135
- HONGAN, M., A note on semiprime rings, Int. J. Math. Math. Sci., 20, No. 2 (1997), 413-415. Zbl0879.16025MR1444747
- LANSKI, C., Derivations with nilpotent values on Lie ideals, Proc. Amer. Math. Soc., 108, No. 1 (1990), 31-37. Zbl0694.16027MR984803
- LANSKI, C.- MONTGOMERY, S., Lie structure of prime rings of characteristic , Pacific J. Math., 42, No. 1 (1972), 117-135. Zbl0243.16018MR323839
- LEE, T. K., Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica, vol. 20, No. 1 (1992), 27-38. Zbl0769.16017MR1166215
- WONG, T. L., Derivations with power-central values on multilinear polynomials, Algebra Colloquium, 3:4 (1996), 369-378. Zbl0864.16031MR1422975
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.