Some generic properties of concentration dimension of measure
Bollettino dell'Unione Matematica Italiana (2003)
- Volume: 6-B, Issue: 1, page 211-219
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topMyjak, Józef, and Szarek, Tomasz. "Some generic properties of concentration dimension of measure." Bollettino dell'Unione Matematica Italiana 6-B.1 (2003): 211-219. <http://eudml.org/doc/195320>.
@article{Myjak2003,
abstract = {Let $K$ be a compact quasi self-similar set in a complete metric space $X$ and let $\mathfrak\{M\}_\{1\}(K)$ denote the space of all probability measures on $K$, endowed with the Fortet-Mourier metric. We will show that for a typical (in the sense of Baire category) measure in $\mathfrak\{M\}_\{1\}(K)$ the lower concentration dimension is equal to $0$, while the upper concentration dimension is equal to the Hausdorff dimension of $K$.},
author = {Myjak, Józef, Szarek, Tomasz},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {211-219},
publisher = {Unione Matematica Italiana},
title = {Some generic properties of concentration dimension of measure},
url = {http://eudml.org/doc/195320},
volume = {6-B},
year = {2003},
}
TY - JOUR
AU - Myjak, Józef
AU - Szarek, Tomasz
TI - Some generic properties of concentration dimension of measure
JO - Bollettino dell'Unione Matematica Italiana
DA - 2003/2//
PB - Unione Matematica Italiana
VL - 6-B
IS - 1
SP - 211
EP - 219
AB - Let $K$ be a compact quasi self-similar set in a complete metric space $X$ and let $\mathfrak{M}_{1}(K)$ denote the space of all probability measures on $K$, endowed with the Fortet-Mourier metric. We will show that for a typical (in the sense of Baire category) measure in $\mathfrak{M}_{1}(K)$ the lower concentration dimension is equal to $0$, while the upper concentration dimension is equal to the Hausdorff dimension of $K$.
LA - eng
UR - http://eudml.org/doc/195320
ER -
References
top- FALCONER, K. J., Dimensions and measures of quasi self-similar sets, Proc. Amer. Math. Soc., 106 (1989), 543-554. Zbl0683.58034MR969315
- GENYUK, J., A typical measure typically has no local dimension, Real Anal. Exchange, 23 (1997/1998), 525-537. Zbl0943.28008MR1639964
- GRUBER, P. M., Dimension and structure of typical compact sets, continua and curves, Mh. Math., 108 (1989), 149-164. Zbl0666.28005MR1026615
- HENGARTNER, W.- THEODORESCU, R., Concentration Functions, Academic Press, New York-London (1973). Zbl0323.60015MR331448
- HUTCHINSON, J. E., Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713-747. Zbl0598.28011MR625600
- LASOTA, A.- MYJAK, J., On a dimension of measures, Bull. Pol. Ac. Math.2002. Zbl1020.28004
- MCLAUGHLIN, J., A note on Hausdorff measures of quasi self-similar sets, Proc. Amer. Math. Soc., 100 (1987), 183-186. Zbl0629.28006MR883425
- MYJAK, J.- RUDNICKI, R., Box and packing dimension of typical compact sets, Monatsh. Math., 131 (2000), 223-226. Zbl0967.28003MR1801749
- MYJAK, J.- RUDNICKI, R., On the typical structure of compact sets, Arch. Math., 76 (2001), 119-126. Zbl0981.46018MR1811289
- MYJAK, J.- RUDNICKI, R., Typical properties of correlation dimension (to appear). Zbl1048.37020MR2009754
- MYJAK, J.- SZAREK, T., Szpilrajn type theorem for concentration dimension of measure, Fund. Math., 172 (2002), 19-25. Zbl0994.37011MR1898400
- SULLIVAN, D., Seminar on conformal and hyperbolic geometry, Lecture Notes, Inst. Hautes Etudes Sci., Bures-sur-Yvette1982.
- MYJAK, J.- RUDNICKI, R., On the Box Dimension of Typical Measures, Monatsh. Math., 136 (2002), 143-150. Zbl1001.28002MR1914225
- MYJAK, J.- SZARCK, T., Generic properties of Markov operators, Rend. Circ. Matem. Palermo (to appear). Zbl1118.37011
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.