Moltiplicatori spettrali per l'operatore di Ornstein-Uhlenbeck

Giancarlo Mauceri

Bollettino dell'Unione Matematica Italiana (2004)

  • Volume: 7-B, Issue: 3, page 563-591
  • ISSN: 0392-4041

Abstract

top
This is a survey of some recent results on spectral multipliers for the Ornstein-Uhlenbeck operator, a natural Laplacian on the Euclidean space endowed with the Gauss measure. The results are discussed in the framework of the general theory of spectral multipliers for generalized Laplacians.

How to cite

top

Mauceri, Giancarlo. "Moltiplicatori spettrali per l'operatore di Ornstein-Uhlenbeck." Bollettino dell'Unione Matematica Italiana 7-B.3 (2004): 563-591. <http://eudml.org/doc/195368>.

@article{Mauceri2004,
abstract = {Questa è una rassegna di alcuni risultati recenti sui moltiplicatori spettrali dell'operatore di Ornstein-Uhlenbeck, un laplaciano naturale sullo spazio euclideo munito della misura gaussiana. I risultati sono inquadrati nell'ambito della teoria generale dei moltiplicatori spettrali per laplaciani generalizzati.},
author = {Mauceri, Giancarlo},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {10},
number = {3},
pages = {563-591},
publisher = {Unione Matematica Italiana},
title = {Moltiplicatori spettrali per l'operatore di Ornstein-Uhlenbeck},
url = {http://eudml.org/doc/195368},
volume = {7-B},
year = {2004},
}

TY - JOUR
AU - Mauceri, Giancarlo
TI - Moltiplicatori spettrali per l'operatore di Ornstein-Uhlenbeck
JO - Bollettino dell'Unione Matematica Italiana
DA - 2004/10//
PB - Unione Matematica Italiana
VL - 7-B
IS - 3
SP - 563
EP - 591
AB - Questa è una rassegna di alcuni risultati recenti sui moltiplicatori spettrali dell'operatore di Ornstein-Uhlenbeck, un laplaciano naturale sullo spazio euclideo munito della misura gaussiana. I risultati sono inquadrati nell'ambito della teoria generale dei moltiplicatori spettrali per laplaciani generalizzati.
LA - ita
UR - http://eudml.org/doc/195368
ER -

References

top
  1. ALEXOPOULOS, G., Spectral multipliers on Lie groups of polynomial growth, Proc. Amer. Math., 120 (1991), 973-979. Zbl0794.43003MR1172944
  2. ANKER, J.-P., L p Fourier multipliers on Riemannian symmetric spaces of the noncompact type, Ann. of Math. (2), 123, no. 3 (1990), 597-628. Zbl0741.43009MR1078270
  3. ANKER, J.-P., Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces, Duke Math. J., 65, no. 2 (1992), 257-297. Zbl0764.43005MR1150587
  4. ANKER, J.-P.- LOHOUÉ, N., Multiplicateurs sur certains espaces symetriques, Amer. J. Math., 108 (1986), 1303-1353. Zbl0616.43009MR868894
  5. ARENDT, W., Gaussian estimates and interpolation of the spectrum in L p , Differential Integral Equations, 7, no. 5-6 (1994), 1153-1168. Zbl0827.35081MR1269649
  6. ASTENGO, F., A. class of L p convolutors on harmonic extensions of H -type groups, J. Lie Theory, 5, no. 2 (1995), 147-164. Zbl0849.43001MR1389425
  7. BAKRY, D., L'hypercontractivité et son utilisation en théorie des semi-groupes, in Lectures on Probability Theory, D. Bakry, R. D. Gill and S. A. Molchanov editors, Springer Lecture Notes in Mathematics, 1581 (1994), 1-114. Zbl0856.47026MR1307413
  8. BOIDOL, J., * -Regularity of exponential Lie groups, Invent. Math., 56 (1980), 31-238. Zbl0423.22008MR561972
  9. CHOJNOWSKA-MICHALIK, A.- GOLDYS, B., Symmetric Ornstein-Uhlenbeck semigroups and their generators, Probab. Theory Related Fields, 124, no. 4 (2002), 459-486. Zbl1028.60057MR1942319
  10. CHRIST, M.- MÜLLER, D., On L p spectral multipliers for a solvable Lie group, Geom. Funct. Anal., 6 (1996), 860-876. Zbl0878.43008MR1415763
  11. CLERC, J.-L.- STEIN, E. M., L p multipliers for noncompact symmetric spaces, Proc. Nat. Acad. Sci. U.S.A., 71 (1974), 3911-3912. Zbl0296.43004MR367561
  12. CHRIST, M., L p bounds for spectral multipliers on nilpotent groups, Trans. Amer. Math. Soc., 328 (1991), 73-81. Zbl0739.42010MR1104196
  13. COIFMAN, R. R.- WEISS, G., Analyse harmonique non-commutative sur certains espaces homognes. Étude de certaines intégrales singulières, Lecture Notes in Mathematics, Vol. 242. Zbl0224.43006MR499948
  14. COWLING, M., Harmonic analysis on semigroups, Ann. of Math., 117 (1983), 267-283. Zbl0528.42006MR690846
  15. COWLING, M.- DOUST, I.- MCINTOSH, A.- YAGI, A., Banach space operators with a bounded H functional calculus, J. Austral. Math. Soc., 60 (1996), 51-89. Zbl0853.47010MR1364554
  16. COWLING, M.- GIULINI, S.- GAUDRY, G.- MAUCERI, G., Weak type 1 , 1 estimates for heat kernel maximal functions in Lie groups, Trans. Amer. Math. Soc., 323 (1991), 637-649. Zbl0722.22006MR967310
  17. COWLING, M.- GIULINI, S.- HULANICKI, A.- MAUCERI, G., Spectral multipliers for a distinguished Laplacian on certain groups of exponential growth, Studia Mathematica, 111 (1994), 103-121. Zbl0820.43001MR1301761
  18. COWLING, M.- SIKORA, A., A spectral multiplier theorem on S U 2 , Math. Z., 238 (2001), 1-36. Zbl0996.42006MR1860734
  19. DA PRATO, G.- ZABCYK, J., Ergodicity for infinite-dimensional systems, London Mathematical Society Lecture Note Series, 229, Cambridge University Press, Cambridge, 1996. Zbl0849.60052MR1417491
  20. DAVIES, E. B., Heat Kernels and Spectral Theory, Cambridge Tract in Math., 92, Cambridge University Press, Cambridge, 1989. Zbl0699.35006MR990239
  21. DE MICHELE, L.- MAUCERI, G., L p multipliers on the Heisenberg group, Michigan Math. J., 26 (1979), 361-371. Zbl0437.43005MR544603
  22. DE MICHELE, L.- MAUCERI, G., H p multipliers on stratified groups, Ann. Mat. Pura Appl., 148 (1987), 353-366. Zbl0638.43007MR932770
  23. DUREN, P. L., Theory of H p spaces, Pure and Applied Math., 38, Academic Press, New York, 1970. Zbl0215.20203MR268655
  24. EPPERSON, J. B., The hypercontractive approach to exactly bounding an operator with complex gaussian kernel, J. Funct. Anal., 87 (1989), 1-30. Zbl0696.47028MR1025881
  25. FOLLAND, G. B.- STEIN, E. M., Hardy spaces on homogeneous groups, Mathematical Notes, 28, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982. Zbl0508.42025
  26. GARCIA-CUERVA, J.- MAUCERI, G.- SJÖGREN, P.- TORREA, J. L., Spectral multipliers for the Ornstein-Uhlenbeck semigroup, J. D'Analyse Math., 78 (1999), 281-305. Zbl0939.42007MR1714425
  27. GARCIA-CUERVA, J.- MAUCERI, G.- MEDA, S.- SJÖGREN, P.- TORREA, J. L., Functional calculus for the Ornstein-Uhlenbeck operator, J. Funct. Anal., 183 (2001), 413-450. Zbl0995.47010MR1844213
  28. GIULINI, S.- MAUCERI, G.- MEDA, S., L p multipliers on noncompact symmetric spaces, J. Reine Angew. Math., 482 (1997), 151-175. Zbl0860.43004MR1427660
  29. HEBISCH, W., A multiplier theorem for Schrödinger operators, Colloq. Math., 60/61 (1990), 659-661. Zbl0779.35025MR1096404
  30. HEBISCH, W., The subalgebra of L 1 A N generated by the Laplacean, Proc. Amer. Math. Soc., 17 (1993), 547-549. Zbl0789.22018MR1111218
  31. HEBISCH, W., Multiplier theorem on generalized Heisenberg groups, Colloq. Math., 65 (1993), 231-239. Zbl0841.43009MR1240169
  32. HEBISCH, W., Spectral multipliers on exponential growth solvable Lie groups, Math. Zeitschr., 229 (1998), 435-441. Zbl0946.22010MR1658573
  33. HEBISCH, W.- MAUCERI, G.- MEDA, S., Holomorphy of spectral multipliers of the Ornstein-Uhlenbeck operator, in stampa su J. Funct. Anal. Zbl1069.47017MR2052115
  34. HEBISCH, W.- LUDWIG, J.- MULLER, D., Sub-Laplacians of holomorphic L p -type on exponential solvable groups, arXiv:math.CA/0307051. Zbl1086.22006
  35. HELGASON, S., Groups and geometric analysis, Integral geometry, invariant differential operators, and spherical functions, Mathematical Surveys and Monographs83, American Mathematical Society, Providence, RI, 2000. Zbl0965.43007MR1790156
  36. HÖRMANDER, L., Estimates for translation invariant operators in L p spaces, Acta Math., 104 (1960), 93-140. Zbl0093.11402MR121655
  37. IONESCU, A., Singular integrals on symmetric spaces of real rank one, Duke Math. J., 114, no. 1 (2002), 101-122. Zbl1007.43010MR1915037
  38. IONESCU, A., Singular integrals on symmetric spaces II, Trans. Amer. Math. Soc., 355, no. 8 (2003), 3359-3378. Zbl1014.22012MR1974692
  39. KALTON, N.- WEIS, L., The H -calculus and sums of closed operators, Math. Ann., 321 (2001), 319-345. Zbl0992.47005MR1866491
  40. KUNSTMANN, P. C.- STRKALJI, Z., H -calculus for submarkovian generators, Proc. Amer. Math. Soc., 131, no. 7 (2003), 2081-2088. Zbl1031.47012MR1963753
  41. LARSON-COHN, L., L p -norms of Hermite polynomials and an extremal problem on Wiener chaos, Ark. Math., 40, no. 1 (2002), 133-144. Zbl1021.60043MR1948890
  42. LUDWIG, J.- MÜLLER, D., Sub-Laplacians of holomorphic L p type on rank one A N -groups and related solvable groups, J. Funct. Anal., 170 (2000), 366-427. Zbl0957.22013MR1740657
  43. LISKEVICH, V. A.- PERELMUTER, M. A., Analyticity of submarkovian semigroups, Proc. Amer. Math. Soc., 123 (1995), 1097-1104. Zbl0826.47030MR1224619
  44. LOHOUÉ, N.- RYCHENER, T., Die Resolvente von Δ auf symmetrischen Räumen von nichtkompakten Typ, Comment. Math. Helv., 57, no. 3 (1982), 445-468. Zbl0505.53022MR689073
  45. MAUCERI, G., Zonal multipliers on the Heisenberg group, Pacific J. Math., 95 (1981), 143-159. Zbl0474.43009MR631666
  46. MAUCERI, G., The Weyl transform and bounded operators on L p R n , J. Funct. Anal., 39 (1980), 408-429. Zbl0458.42008MR600625
  47. MAUCERI, G.- MEDA, S., Vector valued inequalities on stratified groups, Rev. Math. Iberoamericana, 6 (1990), 141-154. Zbl0763.43005MR1125759
  48. MAUCERI, G.- MEDA, S.- SJÖGREN, P., Sharp estimates for the Ornstein-Uhlenbeck operator, preprint. Zbl1116.47036MR2099246
  49. MEDA, S., A general multiplier theorem, Proc. Amer. Math. Soc., 110 (1990), 639-647. Zbl0760.42007MR1028046
  50. METAFUNE, G.- PALLARA, D.- PRIOLA, E., Spectrum of Ornstein-Uhlenbeck operators in L p spaces with respect to invariant measures, J. Funct. Anal., 196, no. 1 (2002), 40-60. Zbl1027.47036MR1941990
  51. METAFUNE, G.- PRÜSS, J.- RHANDI, A.- SCHNAUBELT, R., The domain of the Ornstein-Uhlenbeck operator on an L p -spaces with invariant measure, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 1, no. 2 (2002), 471-485. Zbl1170.35375MR1991148
  52. MEYER, P. A., Notes sur le processus d'Ornstein-Uhlenbeck, Springer Lecture Notes in Mathematics, 920 (1982), 95-132. Zbl0481.60041MR658673
  53. MIHLIN, S. G., On the multipliers of Fourier integrals, Dok. Akad. Nauk., 109 (1956), 701-703. Zbl0073.08402MR80799
  54. MÜLLER, D.- STEIN, E. M., On spectral multipliers for the Heisenberg and related groups, J. Math. Pures Appl., 73 (1994), 413-440. Zbl0838.43011MR1290494
  55. NELSON, E., The free Markov field, J. Funct. Anal., 12 (1973), 211-227. Zbl0273.60079MR343816
  56. PISIER, G., Riesz transform: a simpler analytic proof of P. A. Meyer's inequality, Springer Lectures Notes in Mathematics, 1321 (1988), 485-501. Zbl0645.60061MR960544
  57. REED, M.- SIMON, B., Methods of Modern Mathematical Physics. Vol. I. Functional Analysis, Revised and enlarged edition, Academic Press, New York, 1980. Zbl0459.46001MR751959
  58. SASSO, E., Functional Calculus for the Laguerre Operator, preprint. Zbl1071.47020MR2121746

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.