Multiplier theorem on generalized Heisenberg groups

Waldemar Hebisch

Colloquium Mathematicae (1993)

  • Volume: 65, Issue: 2, page 231-239
  • ISSN: 0010-1354

How to cite

top

Hebisch, Waldemar. "Multiplier theorem on generalized Heisenberg groups." Colloquium Mathematicae 65.2 (1993): 231-239. <http://eudml.org/doc/210217>.

@article{Hebisch1993,
author = {Hebisch, Waldemar},
journal = {Colloquium Mathematicae},
keywords = { boundedness; sublaplacian; generalized Heisenberg groups; Hörmander result; Fourier multipliers},
language = {eng},
number = {2},
pages = {231-239},
title = {Multiplier theorem on generalized Heisenberg groups},
url = {http://eudml.org/doc/210217},
volume = {65},
year = {1993},
}

TY - JOUR
AU - Hebisch, Waldemar
TI - Multiplier theorem on generalized Heisenberg groups
JO - Colloquium Mathematicae
PY - 1993
VL - 65
IS - 2
SP - 231
EP - 239
LA - eng
KW - boundedness; sublaplacian; generalized Heisenberg groups; Hörmander result; Fourier multipliers
UR - http://eudml.org/doc/210217
ER -

References

top
  1. [1] M. Christ, L p bounds for spectral multipliers on nilpotent groups, Trans. Amer. Math. Soc. 328 (1991), 73-81. Zbl0739.42010
  2. [2] J. Cygan, Heat kernels for class 2 nilpotent groups, Studia Math. 64 (1979), 227-238. Zbl0336.35029
  3. [3] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton University Press, 1982. Zbl0508.42025
  4. [4] B. Gaveau, Principe de moindre action, propagation de la chaleur et estimations sous-elliptiques sur certains groupes nilpotents, Acta Math. 139 (1977), 95-153. 
  5. [5] W. Hebisch, A multiplier theorem for Schrödinger operators, Colloq. Math. 60/61 (1990), 659-664. Zbl0779.35025
  6. [6] --, Almost everywhere summability of eigenfunction expansions associated to elliptic operators, Studia Math. 96 (1990), 263-275. Zbl0716.35053
  7. [7] A. Hulanicki, Subalgebra of L 1 ( G ) associated with laplacian on a Lie group, Colloq. Math. 31 (1974), 259-287. Zbl0316.43005
  8. [8] --, The distribution of energy in the Brownian motion in the Gaussian field and analytic-hypoellipticity of certain subelliptic operators on the Heisenberg group, Studia Math. 56 (1976), 165-173. Zbl0336.22007
  9. [9] A. Hulanicki and J. W. Jenkins, Nilpotent Lie groups and summability of eigenfunction expansions of Schrödinger operators, ibid. 80 (1984), 235-244. 
  10. [10] G. Mauceri and S. Meda, Vector-valued multipliers on stratified groups, Rev. Mat. Iberoamericana 6 (1990), 141-154. Zbl0763.43005
  11. [11] H. P. McKean, -Δ plus a bad potential, J. Math. Phys. 18 (1977), 1277-1279. 
  12. [12] D. Müller and E. M. Stein, On spectral multipliers for Heisenberg and related groups, J. Math. Pures Appl., to appear. Zbl0838.43011
  13. [13] J. Randall, The heat kernel for generalized Heisenberg groups, to appear. Zbl0897.43007

Citations in EuDML Documents

top
  1. Elias M. Stein, Spectral multipliers and multiple-parameter structures on the Heisenberg group
  2. Waldemar Hebisch, Boundedness of L 1 spectral multipliers for an exponential solvable Lie group
  3. Waldemar Hebisch, Jacek Zienkiewicz, Multiplier theorem on generalized Heisenberg groups II
  4. Sami Mustapha, Multiplicateurs de Mikhlin pour une classe particulière de groupes non-unimodulaires
  5. Giancarlo Mauceri, Moltiplicatori spettrali per l'operatore di Ornstein-Uhlenbeck
  6. Alessio Martini, Analysis of joint spectral multipliers on Lie groups of polynomial growth
  7. Detlef Müller, Sub-Laplacians of holomorphic L p -type on exponential Lie groups

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.