Costruzione di spike-layers multidimensionali

Andrea Malchiodi

Bollettino dell'Unione Matematica Italiana (2005)

  • Volume: 8-B, Issue: 3, page 615-628
  • ISSN: 0392-4041

Abstract

top
We study positive solutions of the equation - ϵ 2 Δ u + u = u p in Ω , where Ω R n , p > 1 and ϵ is a positive small parameter. Usually we put Neumann boundary conditions. When ϵ goes to zero, we prove the existence of solutions which concentrate on curves or varietis.

How to cite

top

Malchiodi, Andrea. "Costruzione di spike-layers multidimensionali." Bollettino dell'Unione Matematica Italiana 8-B.3 (2005): 615-628. <http://eudml.org/doc/195387>.

@article{Malchiodi2005,
abstract = {Si studiano soluzioni positive dell’equazione $-\epsilon^\{2\} \Delta u+u=u^p$ in $\Omega$, dove $\Omega\subseteq \mathbb\{R\}^\{n\}$ , $p > 1$ ed $\epsilon$ è un piccolo parametro positivo. Si impongono in genere condizioni al bordo di Neumann. Quando $\epsilon$ tende a zero, dimostriamo esistenza di soluzioni che si concentrano su curve o varietà.},
author = {Malchiodi, Andrea},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {10},
number = {3},
pages = {615-628},
publisher = {Unione Matematica Italiana},
title = {Costruzione di spike-layers multidimensionali},
url = {http://eudml.org/doc/195387},
volume = {8-B},
year = {2005},
}

TY - JOUR
AU - Malchiodi, Andrea
TI - Costruzione di spike-layers multidimensionali
JO - Bollettino dell'Unione Matematica Italiana
DA - 2005/10//
PB - Unione Matematica Italiana
VL - 8-B
IS - 3
SP - 615
EP - 628
AB - Si studiano soluzioni positive dell’equazione $-\epsilon^{2} \Delta u+u=u^p$ in $\Omega$, dove $\Omega\subseteq \mathbb{R}^{n}$ , $p > 1$ ed $\epsilon$ è un piccolo parametro positivo. Si impongono in genere condizioni al bordo di Neumann. Quando $\epsilon$ tende a zero, dimostriamo esistenza di soluzioni che si concentrano su curve o varietà.
LA - ita
UR - http://eudml.org/doc/195387
ER -

References

top
  1. AMBROSETTI, A. - MALCHIODI, A. - NI, W.-M., Singularly Perturbed Elliptic Equation with Symmetry: Existence of Solutions Concentrating on Spheres, Part I, Comm. Math. Phys., 235 (2003), 427-466. Zbl1072.35019MR1974510
  2. AMBROSETTI, A. - MALCHIODI, A. - NI, W.-M., Singularly Perturbed Elliptic Equations with Symmetry: Existence of Solutions Concentrating on Spheres, Part II, Indiana Univ. Math. J., 53, no. 2 (2004), 297-329. Zbl1081.35008MR2056434
  3. CASTEN, R. G. - HOLLAND, C. J., Instability results for reaction diffusion equations with Neumann boundary conditions, J. Diff. Eq.27, no. 2 (1978), 266-273. Zbl0338.35055MR480282
  4. CINGOLANI, S. - PISTOIA, A., Nonexistence of single blow-up solutions for a nonlinear Schrödinger equation involving critical Sobolev exponent, Z. Angew. Math. Phys., 55, no. 2 (2004), 201-215. Zbl1120.35308MR2047283
  5. DANCER, E. N., Stable and finite Morse index solutions on Rn or on bounded domains with small diffusion. II, Indiana Univ. Math. J., 53, no. 1 (2004), 97-108. Zbl1183.35125MR2048185
  6. D'APRILE, T., On a class of solutions with non-vanishing angular momentum for nonlinear Schrödinger equations, Diff. Int. Eq., 16, no. 3 (2003), 349-384. Zbl1031.35130MR1947957
  7. DEL PINO, M. - FELMER, P., Semi-classical states for nonlinear Schrödinger equations, J. Funct. Anal., 149, no. 1 (1997), 245-265. Zbl0887.35058MR1471107
  8. GIERER, A. - MEINHARDT, H., A theory of biological pattern formation, Kybernetik (Berlin), 12 (1972), 30-39. 
  9. GUI, C. - WEI, J., On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math., 52, no. 3 (2000), 522-538. Zbl0949.35052MR1758231
  10. KATO, T., Perturbation theory for linear operators. Second edition. Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976. Zbl0342.47009MR407617
  11. LI, Y. Y. - NIRENBERG, L., The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math., 51 (1998), 1445-1490. Zbl0933.35083MR1639159
  12. LIN, C. S. - NI, W.-M. - TAKAGI, I., Large amplitude stationary solutions to a chemotaxis systems, J. Diff. Eq., 72 (1988), 1-27. Zbl0676.35030MR929196
  13. MALCHIODI, A. - MONTENEGRO, M., Boundary concentration phenomena for a singularly perturbed elliptic problem, Comm. Pure Appl. Math., 15 (2002), 1507- 1568. Zbl1124.35305MR1923818
  14. MALCHIODI, A. - MONTENEGRO, M., Multidimensional boundary layers for a singularly perturbed Neumann problem, Duke Math. J., 124, no. 1 (2004), 105-143. Zbl1065.35037MR2072213
  15. NI, W.-M. MALCHIODI, - WEI, J., Multiple Clustered Layer Solutions for Semilinear Neumann Problems on A Ball, Ann. I.H.P. Analyse non lineaire, to appear. Zbl1207.35141
  16. MATANO, H., Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci., 15, no. 2 (1979), 401-454. Zbl0445.35063MR555661
  17. NI, W. M., Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc., 45, no. 1 (1998), 9-18. Zbl0917.35047MR1490535
  18. NI, W. M. - TAKAGI, I., On the shape of least-energy solution to a semilinear Neumann problem, Comm. Pure Appl. Math., 41 (1991), 819-851. Zbl0754.35042MR1115095
  19. NI, W. M. - TAKAGI, I., Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J., 70 (1993), 247-281. Zbl0796.35056MR1219814
  20. SHI, J., Semilinear Neumann boundary value problems on a rectangle, Trans. Amer. Math. Soc., 354, no. 8 (2002), 3117-3154. Zbl0992.35031MR1897394
  21. TURING, A. M., The chemical basis of morphogenesis, Phil. Trans. Royal Soc. London, Series B, Biological Sciences, 237 (1952), 37-72. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.