Costruzione di spike-layers multidimensionali
Bollettino dell'Unione Matematica Italiana (2005)
- Volume: 8-B, Issue: 3, page 615-628
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topMalchiodi, Andrea. "Costruzione di spike-layers multidimensionali." Bollettino dell'Unione Matematica Italiana 8-B.3 (2005): 615-628. <http://eudml.org/doc/195387>.
@article{Malchiodi2005,
abstract = {Si studiano soluzioni positive dellequazione $-\epsilon^\{2\} \Delta u+u=u^p$ in $\Omega$, dove $\Omega\subseteq \mathbb\{R\}^\{n\}$ , $p > 1$ ed $\epsilon$ è un piccolo parametro positivo. Si impongono in genere condizioni al bordo di Neumann. Quando $\epsilon$ tende a zero, dimostriamo esistenza di soluzioni che si concentrano su curve o varietà.},
author = {Malchiodi, Andrea},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {10},
number = {3},
pages = {615-628},
publisher = {Unione Matematica Italiana},
title = {Costruzione di spike-layers multidimensionali},
url = {http://eudml.org/doc/195387},
volume = {8-B},
year = {2005},
}
TY - JOUR
AU - Malchiodi, Andrea
TI - Costruzione di spike-layers multidimensionali
JO - Bollettino dell'Unione Matematica Italiana
DA - 2005/10//
PB - Unione Matematica Italiana
VL - 8-B
IS - 3
SP - 615
EP - 628
AB - Si studiano soluzioni positive dellequazione $-\epsilon^{2} \Delta u+u=u^p$ in $\Omega$, dove $\Omega\subseteq \mathbb{R}^{n}$ , $p > 1$ ed $\epsilon$ è un piccolo parametro positivo. Si impongono in genere condizioni al bordo di Neumann. Quando $\epsilon$ tende a zero, dimostriamo esistenza di soluzioni che si concentrano su curve o varietà.
LA - ita
UR - http://eudml.org/doc/195387
ER -
References
top- AMBROSETTI, A. - MALCHIODI, A. - NI, W.-M., Singularly Perturbed Elliptic Equation with Symmetry: Existence of Solutions Concentrating on Spheres, Part I, Comm. Math. Phys., 235 (2003), 427-466. Zbl1072.35019MR1974510
- AMBROSETTI, A. - MALCHIODI, A. - NI, W.-M., Singularly Perturbed Elliptic Equations with Symmetry: Existence of Solutions Concentrating on Spheres, Part II, Indiana Univ. Math. J., 53, no. 2 (2004), 297-329. Zbl1081.35008MR2056434
- CASTEN, R. G. - HOLLAND, C. J., Instability results for reaction diffusion equations with Neumann boundary conditions, J. Diff. Eq.27, no. 2 (1978), 266-273. Zbl0338.35055MR480282
- CINGOLANI, S. - PISTOIA, A., Nonexistence of single blow-up solutions for a nonlinear Schrödinger equation involving critical Sobolev exponent, Z. Angew. Math. Phys., 55, no. 2 (2004), 201-215. Zbl1120.35308MR2047283
- DANCER, E. N., Stable and finite Morse index solutions on Rn or on bounded domains with small diffusion. II, Indiana Univ. Math. J., 53, no. 1 (2004), 97-108. Zbl1183.35125MR2048185
- D'APRILE, T., On a class of solutions with non-vanishing angular momentum for nonlinear Schrödinger equations, Diff. Int. Eq., 16, no. 3 (2003), 349-384. Zbl1031.35130MR1947957
- DEL PINO, M. - FELMER, P., Semi-classical states for nonlinear Schrödinger equations, J. Funct. Anal., 149, no. 1 (1997), 245-265. Zbl0887.35058MR1471107
- GIERER, A. - MEINHARDT, H., A theory of biological pattern formation, Kybernetik (Berlin), 12 (1972), 30-39.
- GUI, C. - WEI, J., On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math., 52, no. 3 (2000), 522-538. Zbl0949.35052MR1758231
- KATO, T., Perturbation theory for linear operators. Second edition. Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976. Zbl0342.47009MR407617
- LI, Y. Y. - NIRENBERG, L., The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math., 51 (1998), 1445-1490. Zbl0933.35083MR1639159
- LIN, C. S. - NI, W.-M. - TAKAGI, I., Large amplitude stationary solutions to a chemotaxis systems, J. Diff. Eq., 72 (1988), 1-27. Zbl0676.35030MR929196
- MALCHIODI, A. - MONTENEGRO, M., Boundary concentration phenomena for a singularly perturbed elliptic problem, Comm. Pure Appl. Math., 15 (2002), 1507- 1568. Zbl1124.35305MR1923818
- MALCHIODI, A. - MONTENEGRO, M., Multidimensional boundary layers for a singularly perturbed Neumann problem, Duke Math. J., 124, no. 1 (2004), 105-143. Zbl1065.35037MR2072213
- NI, W.-M. MALCHIODI, - WEI, J., Multiple Clustered Layer Solutions for Semilinear Neumann Problems on A Ball, Ann. I.H.P. Analyse non lineaire, to appear. Zbl1207.35141
- MATANO, H., Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci., 15, no. 2 (1979), 401-454. Zbl0445.35063MR555661
- NI, W. M., Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc., 45, no. 1 (1998), 9-18. Zbl0917.35047MR1490535
- NI, W. M. - TAKAGI, I., On the shape of least-energy solution to a semilinear Neumann problem, Comm. Pure Appl. Math., 41 (1991), 819-851. Zbl0754.35042MR1115095
- NI, W. M. - TAKAGI, I., Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J., 70 (1993), 247-281. Zbl0796.35056MR1219814
- SHI, J., Semilinear Neumann boundary value problems on a rectangle, Trans. Amer. Math. Soc., 354, no. 8 (2002), 3117-3154. Zbl0992.35031MR1897394
- TURING, A. M., The chemical basis of morphogenesis, Phil. Trans. Royal Soc. London, Series B, Biological Sciences, 237 (1952), 37-72.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.