Multiple clustered layer solutions for semilinear Neumann problems on a ball

A. Malchiodi; Wei-Ming Ni; Juncheng Wei

Annales de l'I.H.P. Analyse non linéaire (2005)

  • Volume: 22, Issue: 2, page 143-163
  • ISSN: 0294-1449

How to cite

top

Malchiodi, A., Ni, Wei-Ming, and Wei, Juncheng. "Multiple clustered layer solutions for semilinear Neumann problems on a ball." Annales de l'I.H.P. Analyse non linéaire 22.2 (2005): 143-163. <http://eudml.org/doc/78651>.

@article{Malchiodi2005,
author = {Malchiodi, A., Ni, Wei-Ming, Wei, Juncheng},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {multiple clustered layers; singularly perturbed Neumann problem},
language = {eng},
number = {2},
pages = {143-163},
publisher = {Elsevier},
title = {Multiple clustered layer solutions for semilinear Neumann problems on a ball},
url = {http://eudml.org/doc/78651},
volume = {22},
year = {2005},
}

TY - JOUR
AU - Malchiodi, A.
AU - Ni, Wei-Ming
AU - Wei, Juncheng
TI - Multiple clustered layer solutions for semilinear Neumann problems on a ball
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 2
SP - 143
EP - 163
LA - eng
KW - multiple clustered layers; singularly perturbed Neumann problem
UR - http://eudml.org/doc/78651
ER -

References

top
  1. [1] Ambrosetti A., Malchiodi A., Ni W.-M., Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, Part I, Comm. Math. Phys.235 (2003) 427-466. Zbl1072.35019MR1974510
  2. [2] Ambrosetti A., Malchiodi A., Ni W.-M., Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, Part II, Indiana Univ. Math. J.53 (2004) 297-329. Zbl1081.35008MR2056434
  3. [3] Bates P., Fusco G., Equilibria with many nuclei for the Cahn–Hilliard equation, J. Differential Equations160 (2000) 283-356. Zbl0990.35016MR1737000
  4. [4] Bates P., Dancer E.N., Shi J., Multi-spike stationary solutions of the Cahn–Hilliard equation in higher-dimension and instability, Adv. Differential Equations4 (1999) 1-69. Zbl1157.35407MR1667283
  5. [5] Chen C.C., Lin C.S., Uniqueness of the ground state solution of Δ u + f u = 0 in R N , N 3 , Comm. PDE16 (1991) 1549-1572. Zbl0753.35034MR1132797
  6. [6] del Pino M., Felmer P., Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting, Indiana Univ. Math. J.48 (3) (1999) 883-898. Zbl0932.35080MR1736974
  7. [7] del Pino M., Felmer P., Musso M., Two-bubble solutions in the super-critical Bahri–Coron's problem, Cal. Var. PDE16 (2) (2003) 113-145. Zbl1142.35421MR1956850
  8. [8] del Pino M., Felmer P., Wei J., On the role of mean curvature in some singularly perturbed Neumann problems, SIAM J. Math. Anal.31 (1999) 63-79. Zbl0942.35058MR1742305
  9. [9] del Pino M., Felmer P., Wei J., On the role of distance function in some singularly perturbed problems, Comm. PDE25 (2000) 155-177. Zbl0949.35054MR1737546
  10. [10] del Pino M., Felmer P., Wei J., Mutiple peak solutions for some singular perturbation problems, Cal. Var. PDE10 (2000) 119-134. Zbl0974.35041MR1750734
  11. [11] Dancer E.N., Yan S., Multipeak solutions for a singular perturbed Neumann problem, Pacific J. Math.189 (1999) 241-262. Zbl0933.35070MR1696122
  12. [12] Dancer E.N., Yan S., Multi-layer solutions for an elliptic problem, J. Differential Equations194 (2003) 382-405. Zbl1109.35042MR2006218
  13. [13] Gui C., Wei J., Multiple interior spike solutions for some singular perturbed Neumann problems, J. Differential Equations158 (1999) 1-27. Zbl1061.35502MR1721719
  14. [14] Gui C., Wei J., On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Can. J. Math.52 (2000) 522-538. Zbl0949.35052MR1758231
  15. [15] Gui C., Wei J., Winter M., Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire17 (2000) 249-289. Zbl0944.35020MR1743431
  16. [16] Grossi M., Pistoia A., Wei J., Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory, Cal. Var. PDE11 (2000) 143-175. Zbl0964.35047MR1782991
  17. [17] Li Y.-Y., On a singularly perturbed equation with Neumann boundary condition, Comm. PDE23 (1998) 487-545. Zbl0898.35004MR1620632
  18. [18] Li Y.-Y., Nirenberg L., The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math.51 (1998) 1445-1490. Zbl0933.35083MR1639159
  19. [19] Lin C.-S., Ni W.-M., Takagi I., Large amplitude stationary solutions to a chemotaxis systems, J. Differential Equations72 (1988) 1-27. Zbl0676.35030MR929196
  20. [20] Malchiodi A., Montenegro M., Boundary concentration phenomena for a singularly perturbed elliptic problem, Comm. Pure Appl. Math.55 (2002) 1507-1508. Zbl1124.35305MR1923818
  21. [21] Nakashima K., Tanaka K., Clustering layers and boundary layers in spatially inhomogeneous phase transition problems, AIHP Analyse Nonlineaire20 (1) (2003) 107-143. Zbl1114.35005MR1958164
  22. [22] Ni W.-M., Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc.45 (1998) 9-18. Zbl0917.35047MR1490535
  23. [23] Ni W.-M., Takagi I., On the shape of least energy solution to a semilinear Neumann problem, Comm. Pure Appl. Math.41 (1991) 819-851. Zbl0754.35042MR1115095
  24. [24] Ni W.-M., Takagi I., Locating the peaks of least energy solutions to a semilinear Neumann problem, Duke Math. J.70 (1993) 247-281. Zbl0796.35056MR1219814
  25. [25] Ni W.-M., Takagi I., Point-condensation generated by a reaction-diffusion system in axially symmetric domains, Japan J. Industrial Appl. Math.12 (1995) 327-365. Zbl0843.35006MR1337211
  26. [26] Ni W.-M., Takagi I., Wei J., On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems: intermediate solutions, Duke Math. J.94 (1998) 597-618. Zbl0946.35007MR1639546
  27. [27] Ni W.-M., Wei J., On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math.48 (1995) 731-768. Zbl0838.35009MR1342381
  28. [28] Wei J., On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem, J. Differential Equations129 (1996) 315-333. Zbl0865.35011MR1404386
  29. [29] Wei J., On the boundary spike layer solutions of singularly perturbed semilinear Neumann problem, J. Differential Equations134 (1997) 104-133. Zbl0873.35007MR1429093
  30. [30] Wei J., On the interior spike layer solutions to a singularly perturbed Neumann problem, Tohoku Math. J.50 (1998) 159-178. Zbl0918.35024MR1622042
  31. [31] Wei J., On the effect of the domain geometry in a singularly perturbed Dirichlet problem, Differential Integral Equations13 (2000) 15-45. Zbl0970.35034MR1811947
  32. [32] Wei J., Winter M., Stationary solutions for the Cahn–Hilliard equation, Ann. Inst. H. Poincaré Anal. Non Linéaire15 (1998) 459-492. Zbl0910.35049MR1632937
  33. [33] Wei J., Winter M., Multiple boundary spike solutions for a wide class of singular perturbation problems, J. London Math. Soc.59 (1999) 585-606. Zbl0922.35025MR1709667

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.