A spatially inhomogeneous diffusion problem with strong absorption
Riccardo Ricci; Domingo A. Tarzia
Bollettino dell'Unione Matematica Italiana (2003)
- Volume: 6-B, Issue: 3, page 749-761
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topRicci, Riccardo, and Tarzia, Domingo A.. "A spatially inhomogeneous diffusion problem with strong absorption." Bollettino dell'Unione Matematica Italiana 6-B.3 (2003): 749-761. <http://eudml.org/doc/195447>.
@article{Ricci2003,
abstract = {We study the asymptotic behaviour ($t \to +\infty$) of the solutions of a nonlinear diffusion problem with strong absorption. We prove convergence to the stationary solution in the $L^\{\infty\}$ by means of an appropriate family of sub and supersolutions. In appendix we prove the well posedness of the problem.},
author = {Ricci, Riccardo, Tarzia, Domingo A.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {749-761},
publisher = {Unione Matematica Italiana},
title = {A spatially inhomogeneous diffusion problem with strong absorption},
url = {http://eudml.org/doc/195447},
volume = {6-B},
year = {2003},
}
TY - JOUR
AU - Ricci, Riccardo
AU - Tarzia, Domingo A.
TI - A spatially inhomogeneous diffusion problem with strong absorption
JO - Bollettino dell'Unione Matematica Italiana
DA - 2003/10//
PB - Unione Matematica Italiana
VL - 6-B
IS - 3
SP - 749
EP - 761
AB - We study the asymptotic behaviour ($t \to +\infty$) of the solutions of a nonlinear diffusion problem with strong absorption. We prove convergence to the stationary solution in the $L^{\infty}$ by means of an appropriate family of sub and supersolutions. In appendix we prove the well posedness of the problem.
LA - eng
UR - http://eudml.org/doc/195447
ER -
References
top- BEREZOVSKY, A. A.- KERSNER, R., On the Stabilization and Localization of Diffusion-Reaction Processes (in Russian), in Nonlinear boundary value problems of mathematical physics and their applications, A. M. Samojlenko and A. A. Berezovsky Eds., Kiev, 1998.
- BEREZOVSKY, A. A.- KERSNER, R.- PELETIER, L. A., A Free-boundary Problem for a Reaction-Diffusion Equation, preprint
- BERTSCH, M., A Class of Degenerate Diffusion Equation with a singular nonlinear term, Nonlinear Anal. TMA, 7 (1983), 117-127. Zbl0509.35047MR687037
- COMPARINI, E.- RICCI, R.- VAZQUEZ, J. L., Asymptotic Behavior of the Solutions of a Nonlinear Fokker-Plank Equation with Dirichlet Boundary conditions, J. Math. Anal. Appl., 175 (1993), 606-631. Zbl0785.35077MR1219198
- DIAZ, J. I., Nonlinear Partial Differential Equations and Free Boundaries. I. Elliptic Problems, Res. Notes in Math., 106, Pitman, London (1985). Zbl0595.35100
- FRIEDMAN, A.- HERRERO, M. A., Extinction Properties of a Semilinear Heat Equation with Strong Absorption, J. Math. Anal. Appl., 124 (1987), 530-546. Zbl0655.35050MR887008
- KERSNER, R.- NICOLOSI, F., The Nonlinear Heat Equation with Absorption: Effects of Variable Coefficients, J. Math. Anal. Appl., 170 (1992), 551-566. Zbl0799.35131MR1188571
- LADYZENSKAJA, O. A.- SOLONNIKOV, V. A.-, N. N., , Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, vol. 23, Providence R.I., American Mathematical Society (1968). Zbl0174.15403MR241822
- MITROPOL'SKY, YU. A.- BEREZOVSKY, A. A., Free and Non-local Boundary Problems in Metallurgy, Medicine, Ecology and Material Sciences, Nat. Acad. Sci. Ukraine, Kiev, 2000. Zbl0894.35132
- RICCI, R., Large Time Behavior of the Solution of the Heat Equation with Nonlinear Strong Absorption, J. Diff. Equa., 79 (1989), 1-13. Zbl0704.35013MR997606
- RICCI, R.- TARZIA, D. A., Asymptotic behaviour of the Solutions of Class of Diffusion-Reaction Equations, in Free Boundary Problems: Theory and Applications, K. H. Hoffmann & J. Sprekels ed.s, Research Notes in Maths, 186 (1990), 719-721.
- RICCI, R.- TARZIA, D. A., Asymptotic Behavior of the solution of the solution of the dead-core problem, Nonlinear Anal. T.M.A., 13 (1989), 405-411. Zbl0699.35022MR987377
- STAKGOLD, I., Reaction-diffusion problem in chemical engineering, in «Nonlinear Diffusion Problem» (A. Fasano and M. Primicerio, Eds.), Lect. Notes in Math., 1224, Springer-Verlag, Berlin, 1986. Zbl0637.76090
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.