New optimal regularity results for infinite-dimensional elliptic equations

Enrico Priola; Lorenzo Zambotti

Bollettino dell'Unione Matematica Italiana (2000)

  • Volume: 3-B, Issue: 2, page 411-429
  • ISSN: 0392-4041

How to cite

top

Priola, Enrico, and Zambotti, Lorenzo. "New optimal regularity results for infinite-dimensional elliptic equations." Bollettino dell'Unione Matematica Italiana 3-B.2 (2000): 411-429. <http://eudml.org/doc/195479>.

@article{Priola2000,
author = {Priola, Enrico, Zambotti, Lorenzo},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {nonlinear elliptic equations; Hilbert-Schmidt operators},
language = {eng},
month = {6},
number = {2},
pages = {411-429},
publisher = {Unione Matematica Italiana},
title = {New optimal regularity results for infinite-dimensional elliptic equations},
url = {http://eudml.org/doc/195479},
volume = {3-B},
year = {2000},
}

TY - JOUR
AU - Priola, Enrico
AU - Zambotti, Lorenzo
TI - New optimal regularity results for infinite-dimensional elliptic equations
JO - Bollettino dell'Unione Matematica Italiana
DA - 2000/6//
PB - Unione Matematica Italiana
VL - 3-B
IS - 2
SP - 411
EP - 429
LA - eng
KW - nonlinear elliptic equations; Hilbert-Schmidt operators
UR - http://eudml.org/doc/195479
ER -

References

top
  1. BEREREZANSKY, Y. M.- KONDRATIEV, Y. G., Spectral Methods in Infinite-Dimensional Analysis, Voll. 1-2, Kluwer Academic Publishers (1995). Zbl0832.47001MR1340626
  2. CANNARSA, P.- DA PRATO, G., Infinite Dimensional Elliptic Equations with Hölder continuous coefficients, Advances in Differential Equations, 1, n. 3 (1996), 425-452. Zbl0926.35153MR1401401
  3. CANNARSA, P.- DA PRATO, G., Potential Theory in Hilbert Spaces, Sympos. Appl. Math., 54, Amer. Math. Soc., Providence (1998), 27-51. Zbl0898.31008MR1492691
  4. DALECKY, Y. L.- FOMIN, S. V., Measures and differential equations in infinite-dimensional space, Mathematics and its applications, Kluwer Academic Publishers, Dordrecht, Boston, London (1991). Zbl0753.46027MR1140921
  5. DA PRATO, G.- LUNARDI, A., On the Ornstein-Uhlenbeck operator in spaces of continuous functions, J. Funct. Anal., 131 (1995), 94-114. Zbl0846.47004MR1343161
  6. DA PRATO, G.- ZABCZYK, J., Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its Applications44, Cambridge University Press (1992). Zbl0761.60052MR1207136
  7. DUNFORD, N.- SCHWARTZ, J., Linear operators, Part II, Interscience, New York (1958). Zbl0084.10402
  8. GROSS, L., Potential theory on Hilbert space, J. Funct. Anal., 1 (1967), 123-181. Zbl0165.16403MR227747
  9. ISHII, H., Viscosity solutions of nonlinear second-order partial differential equations in Hilbert spaces, Comm. in Part. Diff. Eq., 18 (1993), 601-651. Zbl0812.35153MR1214874
  10. KRYLOV, N. V.- RÖCKNER, M.- ZABCZYK, J., Stochastic PDE's and Kolmogorov Equations in Infinite Dimensions, Lect. Notes in Math.1715, Springer (1999). Zbl0927.00037MR1730228
  11. KUO, H. H., Gaussian Measures in Banach Spaces, Lect. Notes in Math., 463, Springer Verlag (1975). Zbl0306.28010MR461643
  12. LIONS, P. L., Viscosity Solutions of fully nonlinear second-order equations and optimal stochastic control in infinite-dimentions. Part III. Uniqueness of viscosity solutions of general second order equations, J. Funct. Anal., 86 (1989), 1-18. Zbl0757.93084MR1013931
  13. LUNARDI, A., Analytic semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel (1995). Zbl0816.35001MR1329547
  14. MA, Z. M.- ROCKNER, M., Introduction to the Theory of (Non Symmetric) Dirichlet FormsSpringer-Verlag (1992). Zbl0826.31001
  15. PIECH, A., A fundamental solution of the parabolic equation on Hilbert spaces, J. Funct. Anal., 3 (1969), 85-114. Zbl0169.47103MR251588
  16. PRIOLA, E., Schauder estimates for a homogeneous Dirichlet problem in a half space of a Hilbert space, Nonlinear Analysis, T.M.A., to appear. Zbl0992.35108MR1822238
  17. PRIOLA, E., Partial Differential Equations with infinitely many variables, Ph.D. Thesis. in Mathematics, Università di Milano (1999). 
  18. PRIOLA, E., On a class of Markov type semigroups in spaces of uniformly continuous and bounded functions, Studia Mathematica, 136 (3) (1999), 271-295. Zbl0955.47024MR1724248
  19. STROOCK, D. W., Logarithmic Sobolev Inequalities for Gibbs States, Corso CIME, Springer-Verlag (1994). Zbl0801.60056MR1292280
  20. SWIECH, A., «Unbounded» second order partial differential equations in infinite dimensional Hilbert spaces, Comm. in Part. Diff. Eq., 19 (1994), 1999-2036. Zbl0812.35154MR1301180
  21. VAN NEERVEN, J. M. A. M.- ZABCZYK, J., Norm discontinuity of Ornstein-Uhlenbeck semigroups, Semigroup Forum, to appear. Zbl0960.47024MR1847653
  22. TRIEBEL, H., Interpolation Theory, Function spaces, Differential Operators, North-Holland, Amsterdam (1986). Zbl0387.46032MR503903
  23. ZAMBOTTI, L., Infinite-Dimensional Elliptic and Stochastic Equations with Hölder-Continuous Coefficients, Stochastic Anal. Appl., 17 (3) (1999), 487-508. Zbl0938.60051MR1686963
  24. ZAMBOTTI, L., A new approach to existence and uniqueness for martingale problems in infinite dimensions, Prob. Theory and Rel. Fields., to appear. Zbl0963.60059

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.