A counterexample to Schauder estimates for elliptic operators with unbounded coefficients

Enrico Priola

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2001)

  • Volume: 12, Issue: 1, page 15-25
  • ISSN: 1120-6330

Abstract

top
We consider a homogeneous elliptic Dirichlet problem involving an Ornstein-Uhlenbeck operator in a half space R + 2 of R 2 . We show that for a particular initial datum, which is Lipschitz continuous and bounded on R + 2 , the second derivative of the classical solution is not uniformly continuous on R + 2 . In particular this implies that the well known maximal Hölder-regularity results fail in general for Dirichlet problems in unbounded domains involving unbounded coefficients.

How to cite

top

Priola, Enrico. "A counterexample to Schauder estimates for elliptic operators with unbounded coefficients." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 12.1 (2001): 15-25. <http://eudml.org/doc/252325>.

@article{Priola2001,
abstract = {We consider a homogeneous elliptic Dirichlet problem involving an Ornstein-Uhlenbeck operator in a half space $\mathbb\{R\}^\{2\}_\{+\}$ of $\mathbb\{R\}^\{2\}$. We show that for a particular initial datum, which is Lipschitz continuous and bounded on $\mathbb\{R\}^\{2\}_\{+\}$, the second derivative of the classical solution is not uniformly continuous on $\mathbb\{R\}^\{2\}_\{+\}$. In particular this implies that the well known maximal Hölder-regularity results fail in general for Dirichlet problems in unbounded domains involving unbounded coefficients.},
author = {Priola, Enrico},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Optimal Hölder-regularity results; Dirichlet problems; The Ornstein-Uhlenbeck operator; Ornstein-Uhlenbeck operator},
language = {eng},
month = {3},
number = {1},
pages = {15-25},
publisher = {Accademia Nazionale dei Lincei},
title = {A counterexample to Schauder estimates for elliptic operators with unbounded coefficients},
url = {http://eudml.org/doc/252325},
volume = {12},
year = {2001},
}

TY - JOUR
AU - Priola, Enrico
TI - A counterexample to Schauder estimates for elliptic operators with unbounded coefficients
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2001/3//
PB - Accademia Nazionale dei Lincei
VL - 12
IS - 1
SP - 15
EP - 25
AB - We consider a homogeneous elliptic Dirichlet problem involving an Ornstein-Uhlenbeck operator in a half space $\mathbb{R}^{2}_{+}$ of $\mathbb{R}^{2}$. We show that for a particular initial datum, which is Lipschitz continuous and bounded on $\mathbb{R}^{2}_{+}$, the second derivative of the classical solution is not uniformly continuous on $\mathbb{R}^{2}_{+}$. In particular this implies that the well known maximal Hölder-regularity results fail in general for Dirichlet problems in unbounded domains involving unbounded coefficients.
LA - eng
KW - Optimal Hölder-regularity results; Dirichlet problems; The Ornstein-Uhlenbeck operator; Ornstein-Uhlenbeck operator
UR - http://eudml.org/doc/252325
ER -

References

top
  1. Aronson, D.G. - Besala, P., Parabolic Equations with Unbounded Coefficients. J. Diff. Eq., 3, 1967, 1-14. Zbl0149.06804MR208160
  2. Besala, P., On the existence of a Foundamental Solution for a Parabolic Equation with Unbounded Coefficients. Ann. Polon. Math., 29, 1975, 403-409. Zbl0305.35047MR422862
  3. Bochner, S., Harmonic Analysis and the theory of probability. California Monographs in Mathematical Science, University of California Press, Berkeley1955. Zbl0068.11702MR72370
  4. Barucci, E. - Gozzi, F. - Vespri, V., On a semigroup approach to no-arbitrage pricing theory. Proceedings of the Seminar on Stochastic Analysis, Random Fields and Applications, Ascona, Switzerland, 1996. Zbl0933.91010
  5. Cannarsa, P. - Da Prato, G., Infinite Dimensional Elliptic Equations with Hölder continuous coefficients. Advances in Differential equations, 1, n. 3, 1996, 425-452. Zbl0926.35153MR1401401
  6. Cannarsa, P. - Vespri, V., Generation of analytic semigroups by elliptic operators with unbounded coefficients. SIAM J. Math. Anal., 18, 1987, 857-872. Zbl0623.47039MR883572DOI10.1137/0518063
  7. Cerrai, S., Elliptic and parabolic equations in R n with coefficients having polynomial growth. Comm. Part. Diff. Eqns., 21, 1996, 281-317. Zbl0851.35049MR1373775DOI10.1080/03605309608821185
  8. Da Prato, G. - Lunardi, A., On the Ornstein-Uhlenbeck operator in spaces of continuous functions. J. Funct. Anal., 131, 1995, 94-114. Zbl0846.47004MR1343161DOI10.1006/jfan.1995.1084
  9. Friedlin, M.I. - Wentzell, A.D., Random perturbation of dynamical systems. Springer-Verlag, Berlin1983. Zbl0522.60055
  10. Gilbarg, D. - Trudinger, N., Elliptic Partial Differential Equations of Second Order. 2nd ed., Springer-Verlag, Berlin1983. Zbl0361.35003MR737190
  11. Krylov, N.V., Lectures on Elliptic and Parabolic Equations in Hölder Spaces. Graduate Studies in Mathematics, A.M.S., 1996. Zbl0865.35001
  12. Krylov, N.V. - Röckner, M. - Zabczyk, J. - Da Prato, G., Stochastic PDE’s and Kolmogorov Equations in Infinite Dimensions. Lect. Notes in Math., 1715, Springer-Verlag, 1999. 
  13. Lunardi, A., Analytic semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser, 1995. Zbl0816.35001MR1329547DOI10.1007/978-3-0348-9234-6
  14. Lorenzi, L., Schauder estimates for the Ornstein-Uhlenbeck semigroup in spaces of functions with polynomial and exponential growth. Dynamic Syst. and Appl., 9, 2000, 199-220. Zbl0957.35057MR1757896
  15. Lunardi, A., Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in R n . Ann. Sc. Norm. Sup. Pisa, s. 4, 24, 1997, 133-164. Zbl0887.35062MR1475774
  16. Lunardi, A. - Vespri, V., Optimal L and Schauder estimates for elliptic and parabolic operators with unbounded coefficients. In: G. Caristi - E. Mitidieri (eds.), Proc. Conf. Reaction-diffusion systems. Lecture notes in pure and applied mathematics, 194, M. Dekker, 1998, 217-239. Zbl0887.47034MR1472521
  17. Priola, E. - Zambotti, L., New optimal regularity results for infinite dimensional elliptic equations. Boll. Un. Mat. It., (8) 3-B, 2000, 411-429. Zbl0959.35076MR1769994
  18. Priola, E., On a Dirichlet Problem Involving an Ornstein-Uhlenbeck Operator. Scuola Normale Superiore di Pisa, settembre 2000, preprint. Zbl1218.35082MR1953230DOI10.1023/A:1020933325029
  19. Schilling, R.L., Subordination in the sense of Bochner and a related functional calculus. J. Austral. Math. Soc., Ser. A, 64, n. 3, 1998, 368-396. Zbl0920.47039MR1623282
  20. Sheu, S.J., Solution of certain parabolic equations with unbounded coefficients and its application to non-linear filtering. Stochastics, 10, 1983, 31-46. Zbl0533.60068MR714706DOI10.1080/17442508308833261
  21. Zambotti, L., A new approach to existence and uniqueness for martingale problems in infinite dimensions. Prob. Theory and Rel. Fields, to appear. Zbl0963.60059

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.