On a class of Markov type semigroups in spaces of uniformly continuous and bounded functions

Enrico Priola

Studia Mathematica (1999)

  • Volume: 136, Issue: 3, page 271-295
  • ISSN: 0039-3223

Abstract

top
We study a new class of Markov type semigroups (not strongly continuous in general) in the space of all real, uniformly continuous and bounded functions on a separable metric space E. Our results allow us to characterize the generators of Markov transition semigroups in infinite dimensions such as the heat and the Ornstein-Uhlenbeck semigroups.

How to cite

top

Priola, Enrico. "On a class of Markov type semigroups in spaces of uniformly continuous and bounded functions." Studia Mathematica 136.3 (1999): 271-295. <http://eudml.org/doc/216671>.

@article{Priola1999,
abstract = {We study a new class of Markov type semigroups (not strongly continuous in general) in the space of all real, uniformly continuous and bounded functions on a separable metric space E. Our results allow us to characterize the generators of Markov transition semigroups in infinite dimensions such as the heat and the Ornstein-Uhlenbeck semigroups.},
author = {Priola, Enrico},
journal = {Studia Mathematica},
keywords = {semigroups of bounded linear operators; -semigroups; generators of Markov transition semigroups; Ornstein-Uhlenbeck semigroups},
language = {eng},
number = {3},
pages = {271-295},
title = {On a class of Markov type semigroups in spaces of uniformly continuous and bounded functions},
url = {http://eudml.org/doc/216671},
volume = {136},
year = {1999},
}

TY - JOUR
AU - Priola, Enrico
TI - On a class of Markov type semigroups in spaces of uniformly continuous and bounded functions
JO - Studia Mathematica
PY - 1999
VL - 136
IS - 3
SP - 271
EP - 295
AB - We study a new class of Markov type semigroups (not strongly continuous in general) in the space of all real, uniformly continuous and bounded functions on a separable metric space E. Our results allow us to characterize the generators of Markov transition semigroups in infinite dimensions such as the heat and the Ornstein-Uhlenbeck semigroups.
LA - eng
KW - semigroups of bounded linear operators; -semigroups; generators of Markov transition semigroups; Ornstein-Uhlenbeck semigroups
UR - http://eudml.org/doc/216671
ER -

References

top
  1. [1] W. Arendt, Vector valued Laplace transforms and Cauchy problems, Israel J. Math. 59 (1987), 327-352. Zbl0637.44001
  2. [2] R. B. Ash, Real Analysis and Probability, Academic Press, New York, 1972. 
  3. [3] P. Cannarsa and G. Da Prato, Infinite dimensional elliptic equations with Hölder continuous coefficients, Adv. Differential Equations 1 (1996), 425-452. Zbl0926.35153
  4. [4] P. Cannarsa and G. Da Prato, Potential theory in Hilbert spaces, in: Proc. Sympos. Appl. Math. 54, Amer. Math. Soc., 1998, 27-51. Zbl0898.31008
  5. [5] S. Cerrai, A Hille-Yosida theorem for weakly continuous semigroups, Semigroup Forum 49 (1994), 349-367. Zbl0817.47048
  6. [6] S. Cerrai and F. Gozzi, Strong solutions of Cauchy problems associated to weakly continuous semigroups, Differential Integral Equations 8 (1994), 465-486. Zbl0822.47040
  7. [7] G. Da Prato and A. Lunardi, On the Ornstein-Uhlenbeck operator in spaces of continuous functions, J. Funct. Anal. 131 (1995), 94-114. Zbl0846.47004
  8. [8] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia Math. Appl. 44, Cambridge Univ. Press, 1992. Zbl0761.60052
  9. [9] J. Diestel, Sequences and Series in Banach Spaces, Grad. Text. in Math. 92, Springer, New York, 1984. 
  10. [10] E. B. Dynkin, Markov Processes, Vol. I, Springer, Berlin, 1965. Zbl0132.37901
  11. [11] N. Ethier and T. G. Kurtz, Markov Processes, Characterization and Convergence, Wiley, 1986. Zbl0592.60049
  12. [12] M. Fuhrman and M. Röckner, Generalized Mehler semigroups: the non-Gaussian case, Potential Anal., to appear. Zbl0957.47028
  13. [13] L. Gross, Potential theory on Hilbert space, J. Funct. Anal. 1 (1967), 123-181. Zbl0165.16403
  14. [14] P. Guiotto, Non-differentiability of heat semigroups in infinite dimensional Hilbert spaces, Semigroup Forum 55 (1997), 232-236. Zbl0888.47022
  15. [15] M. Hieber and H. Kellerman, Integrated semigroups, J. Funct. Anal. 84 (1989), 160-180. Zbl0689.47014
  16. [16] B. Jefferies, Weakly integrable semigroups on locally convex spaces, ibid. 66 (1986), 347-364. Zbl0589.47043
  17. [17] B. Jefferies, The generation of weakly integrable semigroups, ibid. 73 (1987), 195-215. Zbl0621.47037
  18. [18] H. H. Kuo, Gaussian Measures in Banach Spaces, Lecture Notes in Math. 463, Springer, 1975. Zbl0306.28010
  19. [19] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, 1995. Zbl0816.35001
  20. [20] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983. 
  21. [21] E. Priola, Schauder estimates for a homogeneous Dirichlet problem in a half space of a Hilbert space, Nonlinear Anal., to appear. Zbl0992.35108
  22. [22] E. Priola, π-Semigroups and applications, preprint n. 9, Scuola Norm. Sup. Pisa, 1998. 
  23. [23] K. Yosida, Functional Analysis, 4th ed., Springer, Berlin, 1974. 
  24. [24] L. Zambotti, A new approach to existence and uniqueness for martingale problems in infinite dimensions, preprint n. 13, Scuola Norm. Sup. Pisa, 1998. 

NotesEmbed ?

top

You must be logged in to post comments.